Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Is the Sun an oblique magnetic rotator?

Abstract

The recent observation1 of rotational splitting of the non-radial p modes of l = 1 and l = 2 (with it n20) of the 5-min global oscillation of the Sun was interpreted in terms of rotational splitting associated with a rapid rotation of the solar interior. The precise value deduced for the angular velocity Ω of the interior depends on the assumed variation of Ω with depth and on the weighting function. Thus with a weighting function2 of the form

&Ω̄=∫Ω(r)/V(r) dr ∫dr/V(r) (1)

where V(r) is the local velocity of sound at radius r, one obtains values of Ωcoresurface ranging from 2 to 9 as the radius at which Ω, assumed to be constant for smaller r, ranges from 0.6 to 0.15 of the solar radius. Such a weighting function proportional to the time the wave spends at any particular radius seems very plausible for the effect of any parameter, be it angular velocity or magnetic field, on the propagation of nearly plane waves as they bounce between the centre and the surface. Here I attempt to correlate the size of the observed rotational splitting with the enigmatic 12.2-day variation in the measurement of solar oblateness discovered by Dicke3 previously4 and to interpret the observed near equality of the amplitudes of the m- components of the l = 1 and l = 2 rotationally split modes. This leads to the first empirical evidence that an asymmetric magnetic rotator with megagauss magnetic fields exists in the interior of the Sun. It also suggests that the magnetic energy of young stars is a sizeable fraction of their gravitational energy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Claverie, A., Isaak, G. R., McLeod, C. P., van der Raay, H. B. & Roca Cortes, T. Nature 293, 443–445 (1981).

    Article  ADS  Google Scholar 

  2. Christensen-Dalsgaard, J. & Gough, D. O. Preprint (Univ. Cambridge, 1981).

  3. Dicke, R. H. Sol. Phys. 47, 475–515 (1976).

    Article  ADS  Google Scholar 

  4. Dicke, R. H. & Goldenberg, H. M. Phys. Rev. Lett. 18, 313–316 (1967).

    Article  ADS  Google Scholar 

  5. Allen, C. W. Astrophysical Quantities 3rd edn (Athlone, London, 1973).

    Google Scholar 

  6. Fricke, K. J. & Kippenhahn, R. A. Rev. Astr. Astrophys. 10, 45 (1972).

    Article  ADS  Google Scholar 

  7. Goosens, M. Astrophys. Space Sci. 43, 9–18 (1976).

    Article  ADS  Google Scholar 

  8. Goosens, M. Astrophys. Space Sci. 44, 397–404 (1976).

    Article  ADS  Google Scholar 

  9. Cowling, T. G. Mon. Not. R. astr. Soc. 105, 166–174 (1945).

    Article  ADS  Google Scholar 

  10. Mestel, L. & Takhar, H. S. Mon. Not. R. astr. Soc. 156, 419–436 (1972).

    Article  ADS  Google Scholar 

  11. Dicke, R. H. Astrophys. J. 228, 898–902 (1979).

    Article  ADS  Google Scholar 

  12. Chandrasekhar, S. & Fermi, E. Astrophys. J. 118, 116–141 (1953).

    Article  ADS  MathSciNet  Google Scholar 

  13. Dicke, R. H. Astrophys, J. 171, 331–362 (1972).

    Article  ADS  CAS  Google Scholar 

  14. Schatzman, E. Ann. Astrophys. 25, 18–29 (1962).

    ADS  Google Scholar 

  15. Dicke, R. H. Nature 202, 432–435 (1964).

    Article  ADS  Google Scholar 

  16. Mestel, L. Mon. Not. R. astr. Soc. 140, 177–196 (1968).

    Article  ADS  Google Scholar 

  17. Ezer, D. & Cameron, A. G. W. Astrophys. Lett. 1, 177 (1968).

    ADS  CAS  Google Scholar 

  18. Bahcall, J. N., Bahcall, N. A. & Ulrich, R. K. Astrophys. Lett. 2, 91 (1968).

    ADS  Google Scholar 

  19. Roxburgh, I. W. Pleins Feux Sur La Physique Solaire, 21–23 (CNRS, Paris, 1978).

    Google Scholar 

  20. Dicke, R. H. New Scient. 83, 12–14 (1979).

    ADS  Google Scholar 

  21. Brookes, J. R., Isaak, G. R. & van der Raay, H. B. Nature 259, 92–95 (1976).

    Article  ADS  Google Scholar 

  22. Severny, A. B., Kotov, V. A. & Tsap, T. T. Nature 259, 87–89 (1976).

    Article  ADS  Google Scholar 

  23. Chandrasekhar, S. & Limber, D. N. Astrophys J. 119, 10–13 (1954).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isaak, G. Is the Sun an oblique magnetic rotator?. Nature 296, 130–131 (1982). https://doi.org/10.1038/296130a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/296130a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing