Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The formation of isomaltulose by immobilized Erwinia rhapontici

Abstract

Recently the potential of immobilized cells for the production of biochemicals has become recognized1,2. Here we describe a simple, stable, continuous method of converting concentrated sucrose solutions into isomaltulose using columns of Erwinia rhapontici cells entrapped in alginate gel pellets, which exemplifies several strategies for maximizing the yield and stability of immobilized cells. This method has been successfully operated on a pilot-plant scale. The isomaltulose has possible applications, which are at present being evaluated by potential users, as a non-cariogenic bulking agent in foodstuffs and phar-maceuticals3–5. Little enzyme activity or viability was lost during immobilization and surprisingly high yields of isomaltulose were obtained. The enzyme associated with the cells was stabilized by immobilizing in alginate rather than other support materials; by using structurally intact non-growing but not necessarily viable cells rather than isolated enzyme, disrupted cells or growing cell preparations; and most dramatically, by using concentrated pure sucrose as substrate and by maintaining complete conversion of the sucrose into isomaltulose. Thus the immobilized cells were about 350 times more stable than free cells, a half life of about 8,600 h being achieved.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Abbott, B. J. A. Rep. Ferm. Processes, 205–235 (1977).

  2. Cheetham, P. S. J. Topics Enzym. Perm. Biotechnol. 4, 189–238 (1980).

    CAS  Google Scholar 

  3. Roberts, K. R. & Hayes, M. C. Scand. J. dent. Res. 88, 201–209 (1980).

    CAS  PubMed  Google Scholar 

  4. UK Patent Application 2 066 639A assigned to Tate & Lyle PLC.

  5. UK Patent Application 2 066 640A assigned to Tate & Lyle PLC.

  6. Sharpe, E. S., Stodola, F. H. & Koepsell, H. J. Am. chem. Soc. Abstr., 5-D (1954).

  7. Bourne, E. J., Hutson, D. H. & Weigel, H. Biochem. J. 79, 549–553 (1961).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lund, B. M. & Wyatt, G. M. J. gen. Microbiol. 78, 331–336 (1973).

    Article  CAS  Google Scholar 

  9. Weidenhagen, R. Zucker 14, 456–462 (1961).

    CAS  Google Scholar 

  10. UK Patent Specification 1 429 334 assigned to the South German Sugar Co.

  11. Bernaerts, M. J. & De Ley, J. Biochim. biophys. Acta 30, 661–662 (1958).

    Article  CAS  PubMed  Google Scholar 

  12. Hayano, K. & Fukui, S. J. biol. Chem. 242, 3665–3672 (1967).

    CAS  Google Scholar 

  13. Whiting, P. H., Midgley, M. & Dawes, E. A. Biochem. J. 154, 659–668 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Whiting, P. H., Midgley, M. & Dawes, E. A. J. gen. Microbiol. 92, 304–310 (1976).

    Article  CAS  PubMed  Google Scholar 

  15. Kierstan, M. & Bucke, C. Biotechnol. Bioengng 19, 387–397 (1977).

    Article  CAS  Google Scholar 

  16. Cheetham, P. S. J., Blunt, K. W. & Bucke, C. Biotechnol. Bioengng 21, 2155–2168 (1979).

    Article  CAS  Google Scholar 

  17. Cheetham, P. S. J. Enzym. microb. Tech. 1, 183–188 (1979).

    Article  CAS  Google Scholar 

  18. Politis, D. J. & Goodman, R. N. Appl. envir. Microbiol. 40, 596–607 (1980).

    CAS  Google Scholar 

  19. Lilly, M. D. & Sharpe, A. K. Chem. Engng, Lond. 215, CE12 (1968).

  20. Mandelstam, J. Bact. Rev. 24, 289–308 (1960).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Trinci, A. P. J. & Thurston, C. F. Symp. Soc. gen. Microbiol. 26, 55–80 (1976).

    CAS  Google Scholar 

  22. Thurston, C. F. Process Biochem., 7, (8) 18–23 (1972).

    CAS  Google Scholar 

  23. Astoor, A. & King, E. J. Biochem. J. 56, XLIV (1954).

    Google Scholar 

  24. Sloneker, J. H. & Orentos, D. G. Nature 194, 478–479 (1962).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheetham, P., Imber, C. & Isherwood, J. The formation of isomaltulose by immobilized Erwinia rhapontici. Nature 299, 628–631 (1982). https://doi.org/10.1038/299628a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/299628a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing