Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Use of γ-zirconium phosphate for Cs removal from radioactive waste

Abstract

Radiation stability of synthetic organic ion-exchange resins is not sufficient for the processing of very highly radioactive solutions because these solutions cause significant changes in the capacity and selectivity by hydrolysis of functional groups, chain scission and changes in degree of crosslinking1,2. Among the inorganic ion exchangers, zeolites and clay minerals have been used in decontaminating radioactive waste solutions3–6 because of their high ion-exchange capacity, selectivity and presumably their radiation stability7; however, their use is limited because of their instability in mildly acid solutions1. Another class of materials—insoluble acid salts formed by polybasic acids and certain hydrolysable polyvalent cations— also possess cation exchange properties. These salts include phosphates, arsenates, tungstates and molybdates of zirconium, thorium, titanium and other metals2. Among these insoluble acid salts, zirconium phosphate gels have been investigated8 very extensively. Crystalline phases of zirconium phosphate were first prepared in 1964 and 1968 from gels on refluxing in phosphoric acid by Clearfield and co-workers9,10. We report here the discovery of crystalline γ-zirconium phosphate as a highly selective caesium ion sieve which can be used to separate 137Cs from accident waste water or from circulating water in nuclear reactors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Amphlett, C. B., McDonald, L. A. & Redman, M. J. J. inorg. nucl. Chem. 6, 220–235 (1958).

    Article  CAS  Google Scholar 

  2. Cathers, G. I. Int. Conf, on Peaceful Uses of Atomic Energy, Geneva 7, 490 (1956).

    CAS  Google Scholar 

  3. Mercer, B. W. & Ames, L. L. in Natural Zeolites, Occurrence, Properties, Use (eds Sand, L. B. & Mumpton, F. A.) 451–462 (Pergamon, Oxford, 1978).

    Google Scholar 

  4. Bray, L. A. & Fullman, H. T. Adv. Chem. Ser. 101, 450–455 (1971).

    Article  CAS  Google Scholar 

  5. Mercer, B. W., Ames, L. L. & Smith, P. W. Nucl. appl. Technol. 8, 62–69 (1970).

    Article  CAS  Google Scholar 

  6. Nelson, J. L. & Mercer, B. W. U.S. Atomic Energy Committee Doc. No. HW-79174 (1963).

  7. Fullerton, R. U.S. Atomic Energy Committee Doc. No. HW-69256.

  8. Amphlett, C. B., McDonald, L. A. & Redman, M. J. Chemy. Ind. 1314–1315 (1956).

  9. Clearfield, A. & Stynes, J. A. J. inorg. nucl. Chem. 26, 117–129 (1964).

    Article  CAS  Google Scholar 

  10. Clearfield, A., Blessing, R. H. & Stynes, J. A. J. inorg. nucl. Chem. 30, 2249–2258 (1968).

    Article  CAS  Google Scholar 

  11. Leigh, D. & Dyer, A. J. Inorg. nucl. Chem. 34, 369–372 (1972).

    Article  CAS  Google Scholar 

  12. Yamanaka, S. & Koizumi, M. Clays Clay Miner. 23, 477–478 (1975).

    Article  ADS  CAS  Google Scholar 

  13. Yamanaka, S. & Tanaka, M. J. inorg. nucl. Chem. 41, 45–48 (1979).

    Article  CAS  Google Scholar 

  14. Clearfield, A., Nancollas, G. H. & Blessing, R. H. Ion Exchange and Solvent Extraction (eds Marinsky, J. A. & Marcus, Y.) (Dekker, New York, 1973).

    Google Scholar 

  15. Alberti, G. Accts. Chem. Res. 11, 163–170 (1978).

    Article  CAS  Google Scholar 

  16. Alberti, G. & Constantino, U. J. Chromat. 102, 5–29 (1974).

    Article  Google Scholar 

  17. Vesely, V. & Pekarek, V. Talanta 19, 219–262 (1972).

    Article  CAS  Google Scholar 

  18. Dyer, A. & Ocon, F. T. J. inorg. nucl. Chem. 33, 3153–3163 (1971).

    Article  CAS  Google Scholar 

  19. Constantio, U., Szirtes, L. & Kornyei, J. J. Chromat. 201, 167–174 (1980).

    Article  Google Scholar 

  20. Dollimore, D., Manning, M. J. & Nowell, D. V. Thermochim. Acta 19, 37–44 (1977).

    Article  CAS  Google Scholar 

  21. Clearfield, A. & Garces, J. M. J. inorg. nucl. Chem. 41, 879–884 (1979).

    Article  CAS  Google Scholar 

  22. Clearfield, A. & Kalnins, J. M. J. inorg. nucl. Chem. 40, 1933–1936 (1978).

    Article  CAS  Google Scholar 

  23. Kornyei, J. & Szirtes, L. Izotoptechnika 23, 243–246 (1980).

    CAS  Google Scholar 

  24. Yamanaka, S. Inorg. Chem. 15, 2811–2817 (1976).

    Article  CAS  Google Scholar 

  25. Komarneni, S. Clays Clay Miner. (in the press).

  26. Breck, D. W. Zeolite Molecular Sieves—Structure, Chemistry, and Use (Wiley, New York, 1974).

    Google Scholar 

  27. Suss, M. & Pfrepper, G. Radiochim. Acta 29, 33–40 (1981).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komarneni, S., Roy, R. Use of γ-zirconium phosphate for Cs removal from radioactive waste. Nature 299, 707–708 (1982). https://doi.org/10.1038/299707a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/299707a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing