Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

On the reported optical activity of amino acids in the Murchison meteorite

Abstract

In analyses of extracts from the Murchison meteorite (a carbonaceous chondrite), Engel and Nagy1 reported an excess of L-enantiomers for several protein amino acids but found that the non-protein amino acids were racemic. They suggested that the excess of L-isomers might have resulted from an asymmetric synthesis or decomposition. Their results disagree with those obtained previously2–4 and they claim this is due to improved methodology. In fact, their extraction method and analytical procedure (gas chromatography–mass spectrometry, GC–MS) was similar to those used in the original report2 of amino acids in the Murchison meteorite except that they used specific ion monitoring in the GC–MS measurements. We found the results of Engel and Nagy odd in that likely contaminants (the protein amino acids ala, leu, glu, asp and pro) were nonracemic while unlikely contaminants (isovaline and α-amino-n-butyric acid) were racemic. For example, Engel and Nagy report that the leucine is 90% L-enantiomer in the water-extracted sample whereas isovaline (α-methyl-α-aminobutyric acid) is racemic. It would be most unusual for an abiotic stereoselective decomposition or synthesis of amino acids to occur with protein amino acids but not with non-protein amino acids. We now show here that the explanation of terrestrial contamination is consistent with their results and is much more probable.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Engel, M. H. & Nagy, B. Nature 296, 837–840 (1982).

    Article  ADS  CAS  Google Scholar 

  2. Kvenvolden, K. A. et al. Nature 228, 923–926 (1970).

    Article  ADS  CAS  Google Scholar 

  3. Kvenvolden, K. A., Lawless, J.G. & Ponnamperuma, C. Proc. natn. Acad. Sci. U.S.A. 68, 486–490 (1971).

    Article  ADS  CAS  Google Scholar 

  4. Lawless, J. G. Geochim. cosmochim. Acta 37, 2207–2212 (1973).

    Article  ADS  CAS  Google Scholar 

  5. Hayes, J. M. Geochim. cosmochim. Acta 31, 1395–1440 (1967).

    Article  ADS  CAS  Google Scholar 

  6. Oró, J. et al. Nature 230, 107–108 (1971).

    Article  ADS  Google Scholar 

  7. Oró, J. & Tornabene, T. Science 150, 1046–1048 (1965).

    Article  ADS  Google Scholar 

  8. Narkaparksin, S. thesis, Univ. Houston (1969).

  9. Yuen, G. U. & Kvenvolden, K. A. Nature 246, 301–303 (1973).

    Article  ADS  CAS  Google Scholar 

  10. Kotra, R. K., Shimoyama, A. & Ponnamperuma, C. in Origin of Life (ed. Wolman, Y.) 51–57 (Reidel, Dordrecht, 1981).

    Book  Google Scholar 

  11. Harada, K. & Hare, P. E. in Biogeochemistry of Amino Acids (eds Hare, P. E., Hoering, T. C. & King, K. Jr.) 169–181 (Wiley, New York, 1980).

    Google Scholar 

  12. Fuchs, L. H., Olsen, E. & Jensen, K. J. Smithsonian Contributions to the Earth Sciences No. 10 (1973).

    Google Scholar 

  13. Oró, J. & Skewes, H. B. Nature 207, 1042–1045 (1965).

    Article  ADS  Google Scholar 

  14. Reeck, G. R. & Fisher, L. Int. J. Peptide Protein Res. 5, 109–117 (1973).

    Article  CAS  Google Scholar 

  15. Holden, J. T. in Amino Acid Pools (ed. Holden, J. T.) 73–108 (Elsevier, Amsterdam, 1962).

    Google Scholar 

  16. Nelson, D. L. & Kornberg, A. J. biol. Chem. 245, 1128–1136 (1970).

    CAS  PubMed  Google Scholar 

  17. Bent, K. J. & Morton, A. G. Biochem. J. 92, 260–269 (1964).

    Article  CAS  Google Scholar 

  18. Liardon, R. & Jost, R. Int. J. Peptide Protein Res. 18, 500–505 (1981).

    Article  CAS  Google Scholar 

  19. Cronin, J. R., Gandy, W. E. & Pizzarello, S. in Biogeochemistry of Amino Acids (eds Hare, P. E., Hoering, T. C. & King, K. Jr.) 153–168 (Wiley, New York, 1980).

    Google Scholar 

  20. Doolittle, R. F. Science 214, 149–159 (1981).

    Article  ADS  CAS  Google Scholar 

  21. Sanger, F. & Thompson, E. O. P. Biochim. biophys. Acta 71, 468–471 (1963).

    Article  CAS  Google Scholar 

  22. Pollock, G. E., Cheng, C.-N. & Cronin, S. E. Analyt. Chem. 49, 2–7 (1977).

    Article  CAS  Google Scholar 

  23. Bada, J. L. & Protsch, R. Proc. natn. Acad. Sci. U.S.A. 70, 1331–1334 (1973).

    Article  ADS  CAS  Google Scholar 

  24. Hoopes, E. A., Peltzer, E. T. & Bada, J. L. J. chromatogr. Sci. 16, 556–560 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bada, J., Cronin, J., Ho, MS. et al. On the reported optical activity of amino acids in the Murchison meteorite. Nature 301, 494–496 (1983). https://doi.org/10.1038/301494a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/301494a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing