Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Size of a γ-ray burster optical emitting region

Abstract

Most models of γ-ray bursters require the formation of a thermal plasma, whose properties are relatively insensitive to its mode of formation. Radiation at lower photon energies or during quiescence may be more diagnostic of the underlying cause of the γ-ray bursters. Searches for quiescent γ-ray bursters at low photon energies require an accurate position. Recently, three such accurate positions have been published1–3 which have allowed X-ray3–5, optical6–9, IR10 and radio11 searches for the GRB counterpart. We present here new limits on the quiescent optical and IR flux of the 19 November 1978 burster3. We shall use the measurement of the optical flux during outburst8 to place a lower limit on the size of the optical emitting region.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Laros, J. G. et al. Astrophys. J. Lett. 245, L63–66 (1981).

    Article  ADS  Google Scholar 

  2. Evans, W. D. et al. Astrophys. J. Lett. 237, L7–9 (1980).

    Article  ADS  Google Scholar 

  3. Cline, T. L. et al. Astrophys. J. Lett. 246, L133–136 (1981).

    Article  ADS  Google Scholar 

  4. Pizzichini, G. et al. Space Sci. Rev. 30, 467–470 (1981).

    Article  ADS  Google Scholar 

  5. Helfand, D. J. & Long, K. S. Nature 282, 589–591 (1979).

    Article  ADS  Google Scholar 

  6. Fishman, G. J., Duthie, J. G. & Dufour, R. J. Astrophys. Space Sci. 75, 135–143 (1981).

    Article  ADS  CAS  Google Scholar 

  7. Chevalier, C. et al. The Messenger No. 24, 11–12 (1981).

  8. Schaefer, B. E. Nature 294, 722–724 (1981).

    Article  ADS  Google Scholar 

  9. Peterson, H. et al. IAU Circ. No. 3711 (1982).

  10. Apparao, K. M. V. & Allen, D. Astr. Astrophys. 107, L5–6 (1982).

    ADS  Google Scholar 

  11. Hjellming, R. M. & Ewald, S. P. Astrophys. J. Lett. 246, L137–140 (1981).

    Article  ADS  Google Scholar 

  12. Ricker, G. R. et al. Solid State Imagers for Astronomy (eds Geary, J. & Latham, D.) 190 (SPIE 290, Bellingham, Washington, 1981).

    Book  Google Scholar 

  13. Jennings, M. C. & White, R. S. Astrophys. J. 238, 110–121 (1980).

    Article  ADS  Google Scholar 

  14. Liebert, J., Lebofsky, M. J. & Rieke, G. H. Astrophys. J. Lett. 246, L73–76 (1981).

    Article  ADS  CAS  Google Scholar 

  15. Reid, I. N. & Gilmore, G. Mon. Not. R. astr. Soc. 196, 15–19P (1981).

    Article  ADS  Google Scholar 

  16. Inzani, P. et al. Gamma Ray Transients and Related Astrophysical Phenomena (eds Lingenfelter, R. E., Hudson, H. S. & Worrall, D. M.) 79 (American Institute of Physics, New York, 1982).

    Google Scholar 

  17. Mazets, E. P. et al. Astrophys. Space Sci. 80, 3–83 (1981).

    Article  ADS  CAS  Google Scholar 

  18. Grindlay, J. et al. Nature 300, 730–731 (1982).

    Article  ADS  Google Scholar 

  19. Spitzer, L. Physical Processes in the Interstellar Medium (Wiley, New York, 1978).

    Google Scholar 

  20. Mazets, E. P. et al. Astrophys. Space Sci. 80, 85–117 (1981).

    Article  ADS  CAS  Google Scholar 

  21. Mazets, E. P. et al. Astrophys. Space Sci. 80, 119–143 (1981).

    Article  ADS  CAS  Google Scholar 

  22. Metzger, A. E. et al. Astrophys. J. Lett. 194, L19–25 (1974).

    Article  ADS  Google Scholar 

  23. Klebesadel, R. W. & Strong, I. B. Astrophys. Space Sci. 42, 3–15 (1976).

    Article  ADS  CAS  Google Scholar 

  24. Cline, T. L. & Desai, U. D. Astrophys. Space Sci. 42, 17–27 (1976).

    Article  ADS  CAS  Google Scholar 

  25. Mazets, E. P. & Golenetskii, S. V. Astrophys. Space Sci. 75, 47–81 (1981).

    Article  ADS  CAS  Google Scholar 

  26. Lamb, D. Q. Gamma Ray Transients and Related Astrophysical Phenomena (eds Lingen- felter, R. E., Hudson, H. S. & Worrall, D. M.) 249 (American Institute of Physics, New York, 1982).

    Google Scholar 

  27. Arnett, W. D. & Bowers, R. L. Astrophys. J. Suppl. 33, 415–436 (1977).

    Article  ADS  CAS  Google Scholar 

  28. Teegarden, B. J. & Cline, T. L. Astrophys. J. Lett. 236, L67–70 (1970).

    Article  ADS  Google Scholar 

  29. Lewin, W. H. G. & Joss, P. C. Space Sci. Rev. 28, 3–87 (1981).

    Article  ADS  Google Scholar 

  30. London, R. A. & Comimsky, L. R. Bull. Am. Astr. Soc. 14, 867 (1982).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schaefer, B., Ricker, G. Size of a γ-ray burster optical emitting region. Nature 302, 43–45 (1983). https://doi.org/10.1038/302043a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/302043a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing