Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The arrangement of myosin heads in relaxed crab muscle

Abstract

To understand the mechanism of muscular contraction1,2 and its regulation by Ca2+ (ref. 3), it is important to know the arrangement and configuration of the myosin heads in the space between thin and thick filaments in relaxed muscle. This information is still lacking, mainly because the myosin reflections in the X-ray diffraction patterns are sampled by the myofilament lattice, which makes it difficult to deduce information about the configuration of the head. In crab muscle, however, unsampled myosin reflections can be obtained, and lattice spacing (between adjacent thick filaments) can be changed by osmotic pressure applied to chemically skinned single fibres. The lattice spacing affects the intensity profiles of the myosin reflections, indicating a change of configuration of the heads. The results presented here are consistent with a model in which the myosin heads are arranged in a helical manner with a 4-fold rotational symmetry around the thick filament axis. Each head is elongated, probably 16–18 nm long and 3–4 nm thick, and is, in living resting muscle, centred 13.5 nm from the mean position of the axis of the nearest thin filament, implying that the tip of the head is very close to the surface of the thin filaments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Huxley, A. F. & Simmons, R. M. Nature 233, 533–538 (1971).

    Article  ADS  CAS  Google Scholar 

  2. Huxley, H. E. Science 164, 1356–1366 (1969).

    Article  ADS  CAS  Google Scholar 

  3. Ebashi, S. & Endo, M. Prog. Biophys. molec. Biol. 18, 123–183 (1968).

    Article  CAS  Google Scholar 

  4. Wray, J. S. Nature 277, 37–40 (1979).

    Article  ADS  CAS  Google Scholar 

  5. Maéda, Y. Eur. J. Biochem. 90, 113–121 (1978); thesis, Nagoya Univ. (1978).

    Article  Google Scholar 

  6. Yagi, N. & Matsubara, I. J. molec. Biol. 117, 797–803 (1977).

    Article  CAS  Google Scholar 

  7. Godt, R. E. & Maughan, D. W. Biophys. J. 19, 103–116 (1977).

    Article  CAS  Google Scholar 

  8. Wray, J. S., Vibert, P. J. & Cohen, C. Nature 257, 561–564 (1975).

    Article  ADS  CAS  Google Scholar 

  9. Maéda, Y., Matsubara, I. & Yagi, N. J. molec. Biol. 127, 191–201 (1979).

    Article  Google Scholar 

  10. Maéda, Y. Nature 277, 670–672 (1979).

    Article  ADS  Google Scholar 

  11. Elliott, A. & Offer, G. J. molec. Biol. 123, 505–519 (1978).

    Article  CAS  Google Scholar 

  12. Takahashi, K. J. Biochem. (Tokyo) 83, 905–908 (1978).

    Article  CAS  Google Scholar 

  13. Huxley, H. E. Cold Spring Harb. Symp. quant. Biol. 37, 361–376 (1972).

    Article  Google Scholar 

  14. Haselgrove, J. C. J. molec. Biol. 92, 113–143 (1975).

    Article  CAS  Google Scholar 

  15. Huxley, H. E. Proc. Roy. Soc. Lond. B141, 59–62 (1953).

    ADS  CAS  Google Scholar 

  16. Elliott, G. F., Lowy, J. & Worthington, C. R. J. molec. Biol. 6, 295–305 (1963).

    Article  Google Scholar 

  17. Matsubara, I. & Elliott, G. F. J. molec. Biol. 72, 657–669 (1972).

    Article  CAS  Google Scholar 

  18. Blinks, J. R. J. Physiol., Lond. 117, 42–57 (1967).

    Google Scholar 

  19. Sato, T. G. Anno. Zool. Japan. 27, 157–164 (1954).

    Google Scholar 

  20. Huxley, H. E. & Brown, W. J. molec. Biol. 30, 383–434 (1967).

    Article  CAS  Google Scholar 

  21. Godt, R. E. & Maughan, D. W. Pflügers Arch. ges. Physiol. 391, 334–337 (1981).

    Article  CAS  Google Scholar 

  22. Harmsen, A. thesis, Heidelberg Univ. (1979).

  23. Rosenbaum, G. & Holmes, K. C. in Synchroton Radiation Research (eds Winick, H. & Doniach, S.)533–564 (Plenum, New York, 1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maéda, Y. The arrangement of myosin heads in relaxed crab muscle. Nature 302, 69–72 (1983). https://doi.org/10.1038/302069a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/302069a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing