Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Clustered illegitimate recombination events in mammalian cells involving very short sequence homologies

Abstract

Mammalian cells possess mechanisms that allow unrelated sequences to recombine (illegitimate recombination), This is evidenced by the high rate of recombination between largely non-homologous sequences after DNA transfection1,2. We have analysed the integrated viral sequences present in the polyoma transformed cell line 82-Rat3. Within the single insert of integrated viral sequences there are two regions where multiple recombination events have occurred. The recombination events are particularly interesting as there was no obvious prior selection for their occurrence, and thus they may accurately reflect a normal mechanism of cellular recombination. A total of five recombinant joins have been sequenced. Our results, reported here, indicate that multiple recombinant events occur within small regions (about 50 bp) and that very short homologous stretches (3–4 bp) participate in joining two non-homologous sequences. This suggests that factors other than sequence homologies drive certain recombination events. These results have implications for site-directed recombination following the addition of exogenous DNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Perucho, M., Hanaham, D. & Wigler, M. Cell 22, 309–317 (1980).

    Article  CAS  PubMed  Google Scholar 

  2. Robin, D. M., Ripley, S., Henderson, S. & Axel, R. Cell 23, 29–39 (1981).

    Article  Google Scholar 

  3. Lania, L. et al. Virology 101, 217–232 (1980).

    Article  CAS  PubMed  Google Scholar 

  4. Chia, W. & Rigley, P. W. J. Proc. natn. Acad. Sci. U.S.A. 78, 6638–6642 (1981).

    Article  ADS  CAS  Google Scholar 

  5. Basilico, C., Gattoni, S., Zouzias, D. & Della Valle, G. Cell 17, 645–659 (1979).

    Article  CAS  PubMed  Google Scholar 

  6. Basilico, C. et al. Cold Spring Harb. Symp. quant. Biol. 44, 611–620 (1980).

    Article  CAS  PubMed  Google Scholar 

  7. Birg, F., Dulbecco, R., Fried, M. & Kamen, R. J. Virol. 29, 633–648 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Lania, L., Hayday, A. & Fried, M. J. Virol. 19, 422–431 (1981).

    Google Scholar 

  9. Bullock, P. & Botchan, M. Gene Amplification (ed. Schimke, R. T.) 215–224 (Cold Spring Harbor Laboratory, New York, 1982).

    Google Scholar 

  10. Wilson, J. H., Berget, P. B. & Pipas, J. M. Molec. cell. Biol. 2, 1258–1269 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gutai, M. W. & Nathans, D. J. molec. Biol. 126, 275–288 (1978).

    Article  CAS  PubMed  Google Scholar 

  12. Zian, B. S. & Roberts, R. J. J. molec. Biol. 120, 13–31 (1978).

    Article  Google Scholar 

  13. Brutlag, D. L., Elayton, J., Frieland, P. & Kedes, L. H. Nucleic Acids Res. 10, 279–294 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stringer, J. Nature 296, 363–366 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Dhruva, B. R., Shenk, T. & Subramanian, K. N. Proc. natn. Acad. Sci. U.S.A. 77, 4514–4518 (1980).

    Article  ADS  CAS  Google Scholar 

  16. Ding, D., Jones, M. D., Leigh-Brown, A. & Griffin, B. E. EMBO J. 1, 461–466 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sambrook, J. et al. Cold Spring Harb. Symp. quant. Biol. 44, 569–584 (1980).

    Article  CAS  PubMed  Google Scholar 

  18. Hayday, A., Ruley, H. E. & Fried, M. J. Virol. 44, 67–77 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Williamson, B. Nature 298, 416–418 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Tooze, J. (ed.) DNA Tumour Viruses Appendix B (Cold Spring Harbor Laboratory, New York, 1980).

  21. Kamen, R. et al. Cold Spring Harb. Symp. quant. Biol. 44, 63–75 (1980).

    Article  CAS  PubMed  Google Scholar 

  22. Weaver, R. F. & Weissmann, C. Nucleic Acids Res. 5, 1175–1193 (1979).

    Article  Google Scholar 

  23. Maxam, A.M. & Gilbert, W. Meth. Enzym. 65, 499–560 (1981).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruley, H., Fried, M. Clustered illegitimate recombination events in mammalian cells involving very short sequence homologies. Nature 304, 181–184 (1983). https://doi.org/10.1038/304181a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/304181a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing