Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Two types of sex determination in a nematode

Abstract

Sex in the nematode Caenorhabditis elegans is normally determined by a genic balance mechanism1, the ratio of X chromosomes to autosomes, so that XX animals are self-fertilizing hermaphrodites and X0 animals are males2,3. However, recessive mutations of the autosomal gene tra-1 III cause both XX and X0 animals to develop into males4, and a linked dominant mutation causes both XX and X0 animals to develop into females5. Here I show that these two kinds of mutation are allelic, and that stable mutant strains can be constructed in which sex is determined not by X-chromosome dosage but by the presence or absence of a single active gene. In these strains the autosomes carrying the tra-1 locus are in effect homomorphic Z and W sex chromosomes, and the sexes are homogametic ZZ males and heterogametic ZW females, in contrast to the wild-type arrangement of homogametic XX hermaphrodites and heterogametic X0 males.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. White, M. J. D. Animal Cytology and Evolution (Cambridge University Press, 1973).

    Google Scholar 

  2. Brenner, S. Genetics 77, 71–94 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Madl, J. E. & Herman, R. K. Genetics 93, 393–402 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Hodgkin, J. A. & Brenner, S. Genetics 86, 275–287 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Hodgkin, J. Genetics 96, 649–664 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Sulston, J. E. & Horvitz, H. R. Devl Biol. 56, 110–156 (1977).

    Article  CAS  Google Scholar 

  7. Lauge, G. in Genetics and Biology of Drosophila Vol. 2d (Academic, New York, 1977).

    Google Scholar 

  8. Nelson, G. A., Lew, K. K. & Ward, S. Devl Biol. 66, 386–409 (1978).

    Article  CAS  Google Scholar 

  9. Waterston, R. H. Genetics 97, 307–325 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Wills, N. et al. Cell 33, 575–583 (1983).

    Article  CAS  PubMed  Google Scholar 

  11. Triantaphyllou, A. C. & Hirschmann, H. A. Rev. Phytopath. 2, 57–80 (1964).

    Article  Google Scholar 

  12. Maupas, E. Archs Zool. exp. gen. 8, 463–624 (1900).

    Google Scholar 

  13. Mainx, F. Am. Nat. 98, 415–430 (1964).

    Article  Google Scholar 

  14. Baker, R. H. & Sakai, R. K. J. Hered. 67, 289–294 (1976).

    Article  CAS  PubMed  Google Scholar 

  15. Wachtel, S. S., Ohno, S., Koo, G. C. & Boyse, E. A. Nature 257, 235–236 (1975).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hodgkin, J. Two types of sex determination in a nematode. Nature 304, 267–268 (1983). https://doi.org/10.1038/304267a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/304267a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing