Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Dependence of DNA helix flexibility on base composition

Abstract

We have used triplet anisotropy decay techniques to study the flexibility of synthetic DNA fragments with different base pair compositions. We have found major differences in the torsional and bending stiffness of poly(dG)·poly(dC), poly(dA)·poly(dT) and poly(dA-dC)·poly(dT-dG). Poly(dG)·poly(dC) has a torsional modulus more than 40 times larger than poly(dA-dC)·poly (dT-dG), and approximately 20 times larger than poly(dA)·poly(dT). These differences imply that the torsional stiffness of DNA can vary greatly with base composition. The Young's modulus (bending stiffness) we have measured for poly(dG)·poly(dC) is at least twice that of poly(dA-dC)·poly(dT-dG) or random sequence DNA, and is at least threefold greater than that of poly(dA)·poly(dT). This implies that the bending stiffness of DNA is also strongly dependent on base composition. In light of this dramatic base composition dependence, we suggest here that such stiffness variation may lead to local variations in the stability of chromatin or other protein complexes that require bending or twisting of the DNA helix.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hogan, M., Wang, J., Austin, R. H., Monitto, C. L. & Hershkowitz, S. Proc. natn. Acad. Sci. U.S.A. 79, 3518–3522 (1982).

    Article  ADS  CAS  Google Scholar 

  2. Wang, J., Hogan, M. & Austin, R. H. Proc. natn. Acad. Sci. U.S.A. 79, 5896–5900 (1982).

    Article  ADS  CAS  Google Scholar 

  3. Muller, W. & Crothers, D. M. Eur. J. Biochem. 54, 267–277 (1975).

    Article  CAS  Google Scholar 

  4. Leslie, A. G. W. & Arnott, S. J. molec. Biol. 143, 49–72 (1980).

    Article  CAS  Google Scholar 

  5. Hogan, M., Dattagupta, N. & Crothers, D. M. Proc. natn. Acad. Sci. U.S.A. 75, 195–199 (1978).

    Article  ADS  CAS  Google Scholar 

  6. Crothers, D. M. & Muller, W. Cancer Chemother. Rep. 58, 97–100 (1974).

    CAS  PubMed  Google Scholar 

  7. Robinson, B. H. et al. J. molec. Biol. 139, 19–44 (1980).

    Article  CAS  Google Scholar 

  8. Schurr, J. M. & Allison, S. A. Biopolymers 20, 251–259 (1980).

    Article  Google Scholar 

  9. Barkley, M. D. & Zimm, B. H. J. chem. Phys. 79, 2991–3007 (1979).

    Article  ADS  Google Scholar 

  10. Landau, L. & Lifshitz, E. M. Statistical Physics (Addison-Wesley, Reading, 1958).

    MATH  Google Scholar 

  11. Kovacic, R. T. & VanHolde, K. E. Biochemistry 16, 1490–1498 (1977).

    Article  CAS  Google Scholar 

  12. Gray, H. B. & Hearst, J. E. J. molec. Biol. 35, 111–129 (1968).

    Article  CAS  Google Scholar 

  13. Millar, D. P., Robbins, R. J. & Zewail, A. H. Proc. natn. Acad. Sci. U.S.A. 77, 5593–5597 (1980).

    Article  ADS  CAS  Google Scholar 

  14. Depew, R. E. & Wang, J. C. Proc. natn. Acad. Sci. U.S.A. 72, 4275–4279 (1975).

    Article  ADS  CAS  Google Scholar 

  15. Finch, J. T. et al. Nature 269, 29–36 (1977).

    Article  ADS  CAS  Google Scholar 

  16. Tatchell, K. & VanHolde, K. E. Biochemistry 16, 5295–5303 (1977).

    Article  CAS  Google Scholar 

  17. Hogan, M. & Jardetzky, O. Biochemistry 19, 2079–2085 (1980).

    Article  CAS  Google Scholar 

  18. LePecq, J. B. & Paoletti, C. J. molec. Biol. 27, 87–106 (1967).

    Article  CAS  Google Scholar 

  19. Hogan, M., Dattagupta, N. & Crothers, D. M. Biochemistry 18, 280–288 (1979).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hogan, M., LeGrange, J. & Austin, B. Dependence of DNA helix flexibility on base composition. Nature 304, 752–754 (1983). https://doi.org/10.1038/304752a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/304752a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing