Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Failure of phosphatidic acid to translocate Ca2+ across phosphatidylcholine membranes

Abstract

The putative role of phosphatidic acid (PA) as a Ca2+ ionophore has offered an attractive explanation for the relationship between Ca2+ influx and the turnover of phosphoinositides in stimulated cells1. The ionophoretic properties of PA are evident in its ability to translocate Ca2+ across a layer of organic solvent2. When added exogenously to some cells, PA produces a physiological response3–6 and in neuroblastoma cells stimulation of Ca2+ uptake can also be detected6. It was later shown that low levels of PA added exogenously to, or incorporated endogenously in liposomes, increase their permeability to Ca2+ (refs 7, 8), indicating a direct effect of PA on lipid bilayer properties. We now report, however, that we have not been able to demonstrate facilitation by PA of Ca2+ fluxes across liposomal membranes. Ascribing such a role to PA does not seem compatible with known features of biological membranes or the properties of ionophores known to translocate ions across membranes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Michell, R. H. Biochim. biophys. Acta 415, 81–147 (1975).

    Article  CAS  Google Scholar 

  2. Tyson, C. A., Van de Zande, H. & Green, D. E. J. biol. Chem. 251, 1326–1332 (1976).

    CAS  Google Scholar 

  3. Salmon, D. M. & Honeyman, T. W. Nature 284, 344–345 (1980).

    Article  ADS  CAS  Google Scholar 

  4. Putney, J. W. Jr., Weiss, S. J., Van de Walle, C. M. & Haddas, R. A. Nature 284, 345–347 (1980).

    Article  ADS  CAS  Google Scholar 

  5. Harris, R. A., Schmidt, J., Hitzemann, B. A. & Hitzemann, R. J. Science 212, 1290–1291 (1981).

    Article  ADS  CAS  Google Scholar 

  6. Ohsako, S. & Deguchi, T. J. biol. Chem. 256, 10945–10948 (1981).

    CAS  PubMed  Google Scholar 

  7. Serhan, C., Anderson, P., Goodman, E., Dunham, P. & Weissmann, G. J. biol. Chem. 256, 2736–2741 (1981).

    CAS  PubMed  Google Scholar 

  8. Serhan, C. N., Fridovich, J., Goetzl, E. J., Dunham, P. B. & Weissmann, G. J. biol. Chem. 257, 4746–4752 (1982).

    CAS  PubMed  Google Scholar 

  9. Hanahan, D. J., Brockerhoff, H. & Barron, E. J. J. biol. Chem. 235, 1917–1923 (1960).

    CAS  PubMed  Google Scholar 

  10. Eibl, H. & Kovatchev, S. Meth. Enzym. 72, 632–639 (1981).

    Article  CAS  Google Scholar 

  11. Schieren, H., Rudolph, S., Finkelstein, M., Coleman, P. & Weissmann, G. Biochim. biophys. Acta 542, 137–153 (1978).

    Article  CAS  Google Scholar 

  12. Benton, A. M., Gerrard, J. M., Michiel, T. & Kindom, S. E. Blood 60, 642–649 (1982).

    CAS  PubMed  Google Scholar 

  13. Gerrard, J. M. et al. Am. J. Path. 96, 423–438 (1979).

    CAS  Google Scholar 

  14. Lapetina, E.G., Billah, M. M. & Cuatrecasas, P. J. biol. Chem. 256, 11984–11987 (1981).

    CAS  PubMed  Google Scholar 

  15. Ernster, L. & Nordenbrand, D. Meth. Enzym. 10, 574–580 (1967).

    Article  CAS  Google Scholar 

  16. Papahadjopoulos, D., Vail, W. J., Pangborn, W. A. & Poste, G. Biochim. biophys. Acta 448, 265–283 (1976).

    Article  CAS  Google Scholar 

  17. Liao, M. J. & Prestegard, J. H. Biochim. biophys. Acta 645, 149–156 (1981).

    Article  CAS  Google Scholar 

  18. Olson, F., Hunt, C. A., Szoka, F. C., Vail, W. J. & Papahadjopoulos, D. Biochim. biophys. Acta 557, 9–23 (1979).

    Article  CAS  Google Scholar 

  19. Weissmann, G., Anderson, P., Serhan, C., Samuelsson, E. & Goodman, E. Proc. natn. Acad. Sci. U.S.A. 77, 1506–1510 (1980).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holmes, R., Yoss, N. Failure of phosphatidic acid to translocate Ca2+ across phosphatidylcholine membranes. Nature 305, 637–638 (1983). https://doi.org/10.1038/305637a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/305637a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing