Abstract
The cytochrome P450-containing mixed function oxidases metabolize a variety of endogenous and exogenous compounds including drags, carcinogens, fatty acids and steroids1. Mixed function oxidases have been detected in several tissues2, including brain3. The enzyme system consists of a lipid fraction (phosphatidylcholine), cytochrome P450 and NADPH-cytochrome P450 reductase4. NADPH-cytochrome P450 reductase has been purified to apparent homogeneity and demonstrated to supply reducing equivalents from NADPH to cytochrome P450 (refs 5–7). Detection of NADPH-cytochrome P450 reductase thus represents an indirect means of demonstrating the presence of cytochrome P450. Although the role of cytochrome P450 in the central nervous system (CNS) is not known, it may include such different functions as metabolism of xenobiotics8, aromatization of androgens to oestrogene9 and the formation of catecholoestrogens10. Despite the potentially very important role(s) of cytochrome P450 in brain function, its exact regional distribution remains essentially unknown. Using a specific antibody against rat liver NADPH-cytochrome P450 reductase in combination with immunohistochemical techniques, we have now localized this enzyme to defined catecholamine (CA)-containing structures of the rat and monkey brain.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Conney, A. H. Cancer Res. 42, 4875–4917 (1982).
Burke, M. D. & Orrenius, S. in Characteristics of the Mammalian Hepatic Mixed Function Oxidase. International Encyclopedia of Pharmacology and Therapeutics (eds Schenkman, J. B. & Kupfer, D.) 549–599 (Pergamon, Oxford, 1979).
Cohn, J. A., Alvares, A. P. & Kappas, A. J. exp. Med. 145, 1607–1611 (1977).
Lu, A. Y. H., Junk, K. W. & Coon, M. J. J. biol. Chem. 244, 3714–3721 (1969).
Dignam, J. D. & Strobel, H. W. Biochemistry 16, 1116–1123 (1977).
Yasukochi, Y. & Masters, B. S. S. J. biol. Chem. 251, 5337–5344 (1976).
Vermilion, J. L. & Coon, M. J. J. biol. Chem. 253, 2694–2704 (1978).
Das, M., Seth, P. K. & Mukhtar, H. J. Pharmac. exp. Ther. 216, 156–161 (1981).
Reddy, V. V., Naftolin, F. & Ryan, K. J. Endocrinology 91, 117–121 (1974).
Paul, S. M., Axelrod, J. & Diliberto, E. J. Jr. Endocrinology 101, 1604–1610 (1977).
Guengerich, F. P. & Martin, M. V. Arch. Biochem. Biophys. 205, 365–379 (1980).
Haaparanta, T., Halpert, J., Glaumann, H. & Gustafsson, J.-Å Cancer Res. 43, 5131–5137 (1983).
Laemmli, U. K. Nature 227, 680–685 (1970).
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. J. biol. Chem. 193, 265–275 (1951).
Goding, J. W. J. immun. Meth. 13, 215–226 (1976).
Towbin, H., Staehelin, T. & Gordon, J. J. Proc. natn. Acad. Sci. U.S.A. 76, 4350–4354 (1979).
Coons, A. H. in General Cytochemical Methods (ed. Danielli, J. F.) 399–422 (Academic, New York, 1958).
Hsu, S.-M., Raine, L. & Fanger, H. J. Histochem. Cytochem. 29, 577–580 (1981).
Nakane, P. K. J. Histochem. Cytochem. 16, 557–560 (1968).
Gu, J., de Mey, J., Moeremans, M. & Polak, J. M. Regul. Peptides 1, 365–374 (1981).
Tramu, G., Pillex, A. & Leonardelli, J. J. Histochem. Cytochem. 26, 322–324 (1978).
Dahlström, A. & Fuxe, K. Acta physiol. scand. 62, Suppl. 232, 1–55 (1964).
Patrick, R. L. in Neuroregulators and Psychiatric Disorders (eds Usdin, E. et al.) 88–94 (Oxford University Press, New York, 1976).
Markey, K. A., Kondo, H., Shenkman, L. & Goldstein, M. Molec. Pharmac. 17, 79–85 (1980).
Hökfelt, T. et al. Med. Biol. 54, 427–453 (1976).
Sasame, H. A., Ames, M. M. & Nelson, S. D. Biochem. biophys. Res. Commun. 78, 919–926 (1977).
Fishman, J. & Norton, B. Endocrinology 96, 1054–1058 (1975).
Ball, P. et al. J. clin. Endocr. Metab. 34, 736–746 (1972).
Lloyd, T. & Weisz, J. J. biol. Chem. 253, 4841–4843 (1978).
Inouye, A. & Shinagawa, Y. J. Neurochem. 12, 803–813 (1965).
Holtzman, D. & Desautel, M. J. Neurochem. 14, 1535–1537 (1980).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Haglund, L., Köhler, C., Haaparanta, T. et al. Presence of NADPH-cytochrome P450 reductase in central catecholaminergic neurones. Nature 307, 259–262 (1984). https://doi.org/10.1038/307259a0
Received:
Accepted:
Issue date:
DOI: https://doi.org/10.1038/307259a0
This article is cited by
-
A large-scale polygenic risk score analysis identified candidate proteins associated with anxiety, depression and neuroticism
Molecular Brain (2022)
-
Neurotoxicity due to o-Quinones: Neuromelanin formation and possible mechanisms for o-Quinone detoxification
Neurotoxicity Research (1999)
-
Differential localization of neuronal nitric oxide synthase immunoreactivity and NADPH-diaphorase activity in the cat spinal cord
Cell and Tissue Research (1994)
-
Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase
Nature (1991)
-
Neuromelanin synthesis in rat and human substantia nigra
Journal of Neural Transmission - Parkinson's Disease and Dementia Section (1990)