Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Recombinant nontoxinogenic Vibrio cholerae strains as attenuated cholera vaccine candidates

Abstract

An ideal vacine does not yet exist to prevent cholera, a significant health problem in many less developed countries. Vibrio cholerae, the agent of epidemic and endemic cholera, colonizes the small bowel and secretes a potent enterotoxin that consists of a single A subunit, which stimulates adenylate cyclase activity, and five identical B summits which bind to the ganglioside GM1 receptor of intestinal mucosal cells1. Previous studies in man indicate that toxoid-derived antitoxic immunity by itself is insufficient to provide effective, long-lasting protection against cholera2–4. Using recombinant DNA techniques we have now constructed a live, attenuated V. cholerae strain by deleting genes encoding the enterotoxin. Restriction enzyme fragments encoding cholera toxin were deleted in vitro from cloned vibrio chromosomal DNA and the resulting mutations introduced into the chromosome of a vibrio strain of proven immunogenicity. Recently, Mekalanos and coworkers5 have reported attenuated V. cholerae strains constructed by similar methods. It appears that recombinant DNA techniques offer a promising approach to the development of effective cholera vaccines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Holmgren, J. Nature 292, 413–417 (1981).

    Article  ADS  CAS  Google Scholar 

  2. Curlin, G., Levine, R., Azia, K. M. A., Mizanur Rahman, A. C. M. & Verway, W. F. Proc. 11 th Joint US–Japan Cholera Conf., New Orleans, 314–329 (Dept of Health, Education and Welfare, Bethesda, 1976).

    Google Scholar 

  3. Noriki, H. Proc. 12th Joint US–Japan Cholera Conf., Sapporo, 302–310 (Fuji, Tokyo, 1977).

    Google Scholar 

  4. Levine, M. M. et al. Trans. R. Soc. trop. Med. Hyg. 73, 3–9 (1979).

    Article  CAS  Google Scholar 

  5. Mekalanos, J. J. et al. Nature 306, 551–557 (1983).

    Article  ADS  CAS  Google Scholar 

  6. Levine, M. M. in Choiera and Related Diarrhoeas: 43rd Nobel Symp., Stockholm, 195–203 (Karger, Basel, 1980).

    Google Scholar 

  7. Levine, M. M. et al. J. Infect. Dis. 143, 818–820 (1981).

    Article  CAS  Google Scholar 

  8. Levine, M. M. et al. in Acute Enteric Infections in Children New Prospects for Treatment and Prevention (eds Holme, T., Holmgren, J., Merson, M. H. & Mollby, R.) 449–459 (Elsevier, Amsterdam, 1981).

    Google Scholar 

  9. Levine, M. M. et al. Infect. Immun. 43, 512–522 (1984).

    Google Scholar 

  10. Glass, R. I. et al. Am. J. Epidemiol. 116, 959–970 (1982).

    Article  CAS  Google Scholar 

  11. Kaper, J. B. & Levine, M. M. Lancet ii, 1162–1163 (1981).

    Article  Google Scholar 

  12. Lockman, H. & Kaper, J. B. J. biol. Chem. 258, 13722–13726 (1983).

    CAS  PubMed  Google Scholar 

  13. Ruvkun, G. B. & Ausubel, F. M. Nature 289, 85–88 (1981).

    Article  ADS  CAS  Google Scholar 

  14. Ditta, G., Stanfield, S., Corbin, D. & Helinski, D. R. Proc. natn. Acad. Sci. U.S.A. 77, 7347–7351 (1980).

    Article  ADS  CAS  Google Scholar 

  15. Jacob, A. E. et al. in DNA Insertion Elements, Plasmids, and Episomes (eds Bukhari, A. I., Shapiro, J. A. & Adhya, S. L.) 607–638 (Cold Spring Harbor Laboratory, New York, 1977).

    Google Scholar 

  16. Honda, T. & Finkelstein, R. A. Proc. natn. Acad. Sci. U.S.A. 76, 2052–2056 (1979).

    Article  ADS  CAS  Google Scholar 

  17. Birnboim, H. C. & Doly, J. Nucleic Acids Res. 7, 1513–1523 (1979).

    Article  CAS  Google Scholar 

  18. Parker, R. C., Watson, R. M. & Vinograd, J. Proc. natn. Acad. Sci. U.S.A. 74, 851–855 (1977).

    Article  ADS  CAS  Google Scholar 

  19. Sack, D. A. & Sack, R. B. Infect. Immun. 11, 334–336 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Sack, D. A., Huda, S., Neogi, P. K. B., Daniel, R. R. & Spira, W. M. J. clin. Microbiol. 11, 35–40 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Moseley, S. L. et al. J. infect. Dis. 142, 892–898 (1980).

    Article  CAS  Google Scholar 

  22. Maniatis, T., Jeffry, A. & Kleid, A. G. Proc. natn. Acad. Sci. U.S.A. 72, 1184–1188 (1975).

    Article  ADS  CAS  Google Scholar 

  23. Bagdasarian, M., Bagdasarian, M. M., Coleman, S. & Timmis, K. N. Plasmids of Medical, Environmental and Commercial Importance (eds Timmis, K. N. & Puhler, A.) 411–422 (Elsevier, Amsterdam, 1979).

    Google Scholar 

  24. Brenner, D. J., Fanning, G. R., Johnson, K. E., Citarella, R. V. & Falkow, S. J. Bact. 98, 637–650 (1969).

    CAS  PubMed  Google Scholar 

  25. Southern, E. M. J. molec. Biol. 98, 503–517 (1975).

    Article  CAS  Google Scholar 

  26. Miozzari, G. F. & Yanofsky, C. Nature 276, 684–689 (1978).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaper, J., Lockman, H., Baldini, M. et al. Recombinant nontoxinogenic Vibrio cholerae strains as attenuated cholera vaccine candidates. Nature 308, 655–658 (1984). https://doi.org/10.1038/308655a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/308655a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing