Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Restricted number of chromosomal regions implicated in aetiology of human cancer and leukaemia

Abstract

It has been known since the days of Boveri1 that neoplasia is associated with chromosomal aberration. The introduction, some 10 years ago, of chromosome banding techniques provided the impetus for the description of an immense number of such aberrations, and for the localization to individual chromosome bands of the breaks underlying the aberrations. Hypothetically, the breaks should comprise two essentially different kinds: primary breaks that are actively involved in the malignant development, and secondary breaks, coincidental to this process. In the search for a possible method to identify primary breaks in human cancer, I selected from the catalogue of chromosome aberrations now available2 those cases that had one single structural aberration as their sole deviation from normality. I report here that the breakpoints thus specified affect a surprisingly limited number of chromosomal regions, and conclude that these regions contain genes of prime importance to cancer development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Boveri, T. Zur Frage der Entstehung maligner Tumoren (Fischer, Jena, 1914).

    Google Scholar 

  2. Mitelman, F. Cytogenet. Cell Genet. 36, 1–515 (1983).

    Article  CAS  Google Scholar 

  3. Sandberg, A. A. The Chromosomes in Human Cancer and Leukemia (Elsevier, New York, 1980).

    Google Scholar 

  4. Spira, J. in Chromosomes and Cancer (eds Rowley, J. D. & Ultmann, J.) 85–97 (Academic, New York, 1983).

    Google Scholar 

  5. de la Chapelle, A. & Berger, R. Cytogenet. Cell Genet. 37, 274–311 (1983).

    Article  Google Scholar 

  6. Mitelman, F. in Chromosomes and Cancer (eds Rowley, J. D. & Ultmann, J.) 61–84 (Academic, New York, 1983).

    Google Scholar 

  7. Levan, G., Ahlström, U. & Mitelman, F. Hereditas 77, 263–280 (1974).

    Article  CAS  Google Scholar 

  8. Rowley, J. D. Proc. natn. Acad. sci. U.S.A. 74, 5729–5733 (1977).

    Article  ADS  CAS  Google Scholar 

  9. Mitelman, F. & Levan, G. Hereditas 89, 207–232 (1978).

    Article  CAS  Google Scholar 

  10. Mitelman, F. & Levan, G. Hereditas 95, 79–139 (1981).

    Article  CAS  Google Scholar 

  11. Cairns, J. Nature 289, 353–357 (1981).

    Article  ADS  CAS  Google Scholar 

  12. Klein, G. Nature 294, 313–318 (1981).

    Article  ADS  CAS  Google Scholar 

  13. Pall, M. L. Proc. natn. Acad. Sci. U.S.A. 78, 2465–2468 (1981).

    Article  ADS  CAS  Google Scholar 

  14. Rowley, J. D. Nature 301, 290–291 (1983).

    Article  ADS  CAS  Google Scholar 

  15. ISCN Cytogenet. Cell Genet. 21, 309–404 (1978).

  16. Bartram, C. R. et al. Nature 306, 277–280 (1983).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitelman, F. Restricted number of chromosomal regions implicated in aetiology of human cancer and leukaemia. Nature 310, 325–327 (1984). https://doi.org/10.1038/310325a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/310325a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing