Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Turbulent motions may control phytoplankton photosynthesis in the upper ocean

Abstract

In their natural environment, algal cells may experience large amplitude variations in incident light on time scales shorter than those associated with the reproductive rate. A major source of variability is due to vertical mixing of water masses: turbulence in the upper mixing layer of the ocean transports algae through a light field that decreases exponentially from the sea surface. Several attempts have been made to discover how the physiological adaptation of algae to fluctuating light1–9 might affect the magnitude of marine primary production10–16,17, but it has proved difficult to estimate the vertical mixing rate at sea, and hence the time scales of irradiance variability 18,19. We recently succeeded, for the first time to our knowledge, in making direct measurement of rates of turbulent kinetic energy (TKE) dissipation, simultaneously with those of photoadaptation properties of natural phytoplankton populations. Dissipation of TKE in these experiments was a strong determinant of algal photosynthetic rate in the upper mixing layer; we conclude that the vertical mixing induced by turbulence to a large degree controls the photosynthetic performance of algae in nature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Steeman Nielsen, E. & Jorgensen, E. G. Physiol. Pl. 21, 647–654 (1968).

    Article  Google Scholar 

  2. Beardall, J. & Morris, I. Mar. Biol. 37, 377–387 (1976).

    Article  Google Scholar 

  3. Marra, J. Mar. Biol. 46, 191–202 (1978).

    Article  CAS  Google Scholar 

  4. Harris, G. P. Can. J. Fish. aquat. Sci. 37, 877–900 (1980).

    Article  Google Scholar 

  5. Marra, J. Mar. Biol. Lett. 1, 175–183 (1980).

    ADS  Google Scholar 

  6. Falkowski, P. G. in Primary Production in the Sea (ed. Falkowski, P. G.) 99–119 (Plenum, New York, 1980).

    Google Scholar 

  7. Falkowski, P. G. J. Plankton Res. 3, 203–216 (1981).

    Article  CAS  Google Scholar 

  8. Rivkin, R. B., Seliger, H. H., Swift, E. & Biggley, W. H. Mar. Biol. 68, 181–191 (1982).

    Article  CAS  Google Scholar 

  9. Berseneva, G. P., Ktupatkina, D. K. & Sergeeva, L. M. Ekologiya 3, 12–16 (1982).

    Google Scholar 

  10. Harris, G. P. & Lott, J. N. A. J. Fish. Res. Bd Can. 30, 1771–1778 (1973).

    Article  Google Scholar 

  11. Jewson, D. H. & Wood, R. B. Verh. int. Verein. theor. angew. Limnol. 19, 1037–1044 (1975).

    Google Scholar 

  12. Kremer, J. N. & Nixon, S. W. A Coastal Marine Ecosytem: Simulation and Analysis (Springer, Berlin, 1978).

    Book  Google Scholar 

  13. Marra, J. Mar. Biol. 46, 203–208 (1978).

    Article  CAS  Google Scholar 

  14. Platt, T. & Gallegos, C. L. in Primary Production in the Sea (ed. Falkowski, P. G.) 339–362 (Plenum, New York, 1980).

    Book  Google Scholar 

  15. Falkowski, P. G. & Wirick, C. D. Mar. Biol. 65, 69–75 (1981).

    Article  CAS  Google Scholar 

  16. Gallegos, C. L. & Platt, T. Deep-Sea Res. 29, 65–76 (1982).

    Article  ADS  Google Scholar 

  17. Falkowski, P. G. & Wirick, C. D. Mar. Biol 65, 69–75 (1981).

    Article  CAS  Google Scholar 

  18. Denman, K. L. & Gargett, A. Limnol. Oceanogr. 28, 801–815 (1983).

    Article  ADS  Google Scholar 

  19. Falkowski, P. G. J. mar. Res. 41, 215–237 (1983).

    Article  Google Scholar 

  20. Lewis, M. R., Cullen, J. J. & Platt, T. Mar. Ecol. Prog. Ser. 15, 141–149 (1984).

    Article  ADS  Google Scholar 

  21. Platt, T., Gallegos, C. L. & Harrison, W. G. J. mar. Res. 38, 687–701 (1980).

    Google Scholar 

  22. Lewis, M. R. & Smith, J. C. Mar. Ecol. Prog. Ser. 13, 99–102 (1983).

    Article  ADS  CAS  Google Scholar 

  23. Cullen, J. J. & Renger, E. H. Mar. Biol. 53, 13–20 (1979).

    Article  CAS  Google Scholar 

  24. Vincent, W. F. J. Phycol. 15, 429–434 (1979).

    Article  CAS  Google Scholar 

  25. Vincent, W. F. J. Phycol. 16, 568–577 (1980).

    Article  CAS  Google Scholar 

  26. Osborn, T. R. J. phys. Oceanogr. 4, 109–115 (1974).

    Article  ADS  Google Scholar 

  27. Osborn, T. R. J. geophys. Res. 83, 2939–2957 (1978).

    Article  ADS  Google Scholar 

  28. Oakey, N. S. J. phys. Oceanogr. 12, 256–271 (1982).

    Article  ADS  Google Scholar 

  29. Oakey, N. S. & Elliott, J. A. J. phys. Oceanog. 12, 171–185 (1982).

    Article  ADS  Google Scholar 

  30. Lilly, D. K., Waco, D. E. & Adelfang, S. I. J. appl. Met. 13, 488–493 (1974).

    Article  Google Scholar 

  31. Weinstock, J. J. atmos. Sci. 35, 1022–1027 (1978).

    Article  ADS  Google Scholar 

  32. Osborn, T. R. J. phys. Oceanogr. 10, 83–89 (1980).

    Article  ADS  Google Scholar 

  33. Cullen, J. J. & Horrigan, S. G. Mar. Biol. 62, 81–89 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewis, M., Horne, E., Cullen, J. et al. Turbulent motions may control phytoplankton photosynthesis in the upper ocean. Nature 311, 49–50 (1984). https://doi.org/10.1038/311049a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/311049a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing