Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A Ca-dependent Cl conductance in cultured mouse spinal neurones

Abstract

Long-lasting conductance changes triggered either by brief (millisecond) electrical stimuli and/or entry of calcium ions have been observed in a variety of excitable tissues1–4. The electrical consequences of these events depend on the ion conductance affected and on the ion concentration gradient across the membrane, while the long-lasting nature of the change sustains the cell at either sub- or supra-threshold levels for activation of regenerative action potentials. We report here that many cultured mouse spinal neurones exhibit a voltage-activated chloride conductance that lasts for seconds and is dependent on extracellular calcium, [Ca2+]0. This conductance may repolarize and stabilize the cell at a level subthreshold for generating action potentials, thus complementing the functional roles of Ca-dependent K+ conductances5–8.

This is a preview of subscription content, access via your institution

Access options

Similar content being viewed by others

References

  1. Legendre, P., Cooke, I. M. & Vincent, J.-D. J. Neurophysiol. 48, 1121–1141 (1982).

    Article  CAS  Google Scholar 

  2. Dichter, M. A. & Fischbach, G. D. J. Physiol., Lond. 267, 281–298 (1977).

    Article  CAS  Google Scholar 

  3. Fukada, J., Fischbach, G. D. & Smith, T. G. Jr Devl Biol. 49, 412–424 (1976).

    Article  Google Scholar 

  4. MacDonald, J. F. & Schneiderman, H. H. Brain Res. 296, 350–355 (1984).

    Article  CAS  Google Scholar 

  5. Barrett, E. F. & Barrett, J. N. J. Physiol., Lond. 255, 737–774 (1976).

    Article  CAS  Google Scholar 

  6. Aldrich, R. W., Getting, P. A. & Thompson, S. H. J. Physiol., Lond. 291, 531–544 (1979).

    Article  Google Scholar 

  7. McAfee, D. A. & Tarowsky, P. J. J. Physiol., Lond. 290, 507–523 (1979).

    Article  CAS  Google Scholar 

  8. Barrett, E. F., Barrett, J. N. & Crill, W. E. J. Physiol., Lond. 304, 251–276 (1980).

    Article  CAS  Google Scholar 

  9. Ransom, B. R., Neale, E., Henkart, M., Bullock, P. N. & Nelson, P. G. J. Neurophysiol. 40, 1132–1150 (1981).

    Article  Google Scholar 

  10. Adams, P. R. in Advances in Physiological Sciences Vol. 4 (ed. Salankim, J.) 135–138 (Pergamon, New York, 1981).

    Google Scholar 

  11. Puil, E. & Werman, R. Can. J. Physiol. Pharmac. 59, 1280–1284 (1981).

    Article  CAS  Google Scholar 

  12. Brown, D. A., Griffith, W. H. & Halliwell, J. V. J. Physiol., Lond. 324, 63P (1982).

  13. Segal, M. & Barker, J. L. J. Neurophysiol. (in the press).

  14. Reuter, H. & Scholz, H. J. Physiol., Lond. 262, 17–47 (1977).

    Article  Google Scholar 

  15. Barker, J. L., McBurney, R. N. & MacDonald, J. F. J. Physiol., Lond. 322, 365–387 (1982).

    Article  CAS  Google Scholar 

  16. Lansman, J. B. Biophys. J. 41, 61a (1983).

    Google Scholar 

  17. Colquhoun, D., Neher, E., Reuter, H. & Stevens, C. F. Nature 294, 752–754 (1981).

    Article  ADS  CAS  Google Scholar 

  18. Yellen, G. Nature 296, 357–359 (1982).

    Article  ADS  CAS  Google Scholar 

  19. Chesnoy-Marchais, D. J. Physiol., Lond. 342, 277–308 (1983).

    Article  CAS  Google Scholar 

  20. Barker, J. L. & Ransom, B. R. J. Physiol., Lond. 280, 331–354 (1978).

    Article  ADS  CAS  Google Scholar 

  21. Barish, M. E. J. Physiol., Lond. 342, 309–325 (1983).

    Article  ADS  CAS  Google Scholar 

  22. Bader, C. R., Bertrand, D. & Schwartz, E. A. J. Physiol., Lond. 331, 253–284 (1982).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Owen, D., Segal, M. & Barker, J. A Ca-dependent Cl conductance in cultured mouse spinal neurones. Nature 311, 567–570 (1984). https://doi.org/10.1038/311567a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/311567a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing