Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Autonomous chaotic behaviour of the slime mould Dictyostelium discoideum predicted by a model for cyclic AMP signalling

Abstract

How sustained oscillations lose their periodicity and thus give rise to chaos was first analysed in mathematical models1–3, then observed in chemical systems such as the Belousov–Zhabotinsky reaction4,5 where chaos is autonomous because it originates from endogenous kinetic mechanisms. In contrast, chaos can also be obtained by periodically forcing an oscillatory system, as shown, for example, in cardiac cells6 and yeast glycolysis7. Biochemical evidence for autonomous chaos has been obtained both in vitro for the peroxidase reaction8 and in enzymatic models9,10 not based directly on experimental systems. We report here the occurrence of autonomous chaos in a realistic model for the cyclic AMP signalling system of the slime mould Dictyostelium discoideum11–13, based on receptor modification. This model14 is also capable of bursting, a phenomenon characteristic of some pacemaker neurones such as R15 in Aplysia15. Whereas bursting has not been observed in D. discoideum, our model suggests that ‘aperiodic signalling’16 in the mutant Fr17 provides the first example of autonomous chaos occurring spontaneously at the cellular level.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lorenz, E. N. J. atmos. Sci. 20, 130–141 (1963).

    Article  ADS  Google Scholar 

  2. May, R. Nature 261, 459–467 (1976).

    Article  ADS  CAS  Google Scholar 

  3. Feigenbaum, M. J. J. statist. Phys. 19, 25–52 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  4. Schmitz, R. A., Graziani, K. R. & Hudson, J. L. J. chem. Phys. 67, 3040–3044 (1977).

    Article  ADS  CAS  Google Scholar 

  5. Roux, J. C. Physica 7 D, 57–68 (1983).

    Google Scholar 

  6. Guevara, M. R., Glass, L. & Shrier, A. Science 214, 1350–1353 (1981).

    Article  ADS  CAS  Google Scholar 

  7. Markus, M., Kuschmitz, D. & Hess, B. FEBS Lett. 172, 235–238 (1984).

    Article  CAS  Google Scholar 

  8. Olsen, L. F. & Degn, H. Nature 267, 177–178 (1977).

    Article  ADS  CAS  Google Scholar 

  9. Decroly, O. & Goldbeter, A. Proc. natn. Acad. Sci. U.S.A. 79, 6917–6921 (1982).

    Article  ADS  CAS  Google Scholar 

  10. Goldbeter, A. & Decroly, O. Am. J. Physiol. 245, R478–R483 (1983).

    CAS  PubMed  Google Scholar 

  11. Gerisch, G. & Malchow, D. Adv. cyclic Nucleotide Res. 7, 49–68 (1976).

    CAS  PubMed  Google Scholar 

  12. Newell, P. C. in Microbial Interactions: Receptors and Recognition Ser B, Vol. 3 (ed. Reissig, J. L.) 3–57 (Chapman & Hall, London, 1977).

    Google Scholar 

  13. Gerisch, G. A. Rev. Physiol. 44, 535–552 (1982).

    Article  CAS  Google Scholar 

  14. Martiel, J. L. & Goldbeter, A. C. r. hebd. Séanc. Acad. Sci, Paris, Ser. III 298, 549–552 (1984).

    CAS  Google Scholar 

  15. Alving, B. O. J. gen. Physiol. 51, 29–45 (1968).

    Article  CAS  Google Scholar 

  16. Durston, A. J. Devl Biol. 38, 308–319 (1974).

    Article  CAS  Google Scholar 

  17. Shaffer, B. M. Adv. Morphogen. 2, 109–182 (1962).

    Article  Google Scholar 

  18. Konijn, T. M., Van de Meene, J. G. C., Bonner, J. T. & Barkley, D. S. Proc. natn. Acad. Sci. U.S.A. 58, 1152–1154 (1967).

    Article  ADS  CAS  Google Scholar 

  19. Alcantara, F. & Monk, M. J. gen. Microbiol. 85, 321–334 (1974).

    Article  CAS  Google Scholar 

  20. Tomchik, K. J. & Devreotes, P. N. Science 212, 443–446 (1981).

    Article  ADS  CAS  Google Scholar 

  21. Gerisch, G. & Wick, U. Biochem. biophys. Res. Commun. 65, 364–370 (1975).

    Article  CAS  Google Scholar 

  22. Goldbeter, A. Nature 253, 540–542 (1975).

    Article  ADS  CAS  Google Scholar 

  23. Goldbeter, A. & Caplan, S. R. A. Rev. Biophys. Bioengng 5, 449–476 (1976).

    Article  CAS  Google Scholar 

  24. Goldbeter, A. & Segel, L. A. Proc. natn. Acad. Sci. U.S.A. 74, 1543–1547 (1977).

    Article  ADS  CAS  Google Scholar 

  25. Goldbeter, A. & Segel, L. A. Differentiation 17, 127–135 (1980).

    Article  CAS  Google Scholar 

  26. Roos, W., Scheidegger, C. & Gerisch, G. Nature 266, 259–261 (1977).

    Article  ADS  CAS  Google Scholar 

  27. Theibert, A. & Devreotes, P. N. J. Cell Biol. 97, 173–177 (1983).

    Article  CAS  Google Scholar 

  28. Stadel, J. M. et al. Proc. natn. Acad. Sci. U.S.A. 80, 3173–3177 (1983).

    Article  ADS  CAS  Google Scholar 

  29. Springer, M. S., Goy, M. F. & Adler, J. Nature 280, 279–284 (1979).

    Article  ADS  CAS  Google Scholar 

  30. Katz, B. & Thesleff, S. J. Physiol., Lond. 138, 63–80 (1957).

    Article  CAS  Google Scholar 

  31. Heidmann, T. & Changeux, J. P. A. Rev. Biochem. 47, 317–357 (1978).

    Article  CAS  Google Scholar 

  32. Lubs-Haukeness, J. & Klein, C. J. biol. Chem. 257, 12204–12208 (1982).

    CAS  PubMed  Google Scholar 

  33. Devreotes, P. N. & Steck, T. L. J. Cell Biol. 80, 300–309 (1979).

    Article  CAS  Google Scholar 

  34. Alamgir, M. & Epstein, I. R. J. Am. chem. Soc. 105, 2500–2501 (1983).

    Article  CAS  Google Scholar 

  35. Coukell, M. B. & Chan, F. K. FEBS Lett. 110, 39–42 (1980).

    Article  CAS  Google Scholar 

  36. Kessin, R. H. Cell 10, 703–708 (1977).

    Article  CAS  Google Scholar 

  37. Mackey, M. C. & Glass, L. Science 197, 287–289 (1977).

    Article  ADS  CAS  Google Scholar 

  38. Holden, A. V., Winlow, W. & Haydon, R. G. Biol. Cybern. 43, 169–173 (1982).

    Article  CAS  Google Scholar 

  39. Darmon, M., Barra, J. & Brachet, P. J. Cell Sci. 31, 233–243 (1978).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martiel, J., Goldbeter, A. Autonomous chaotic behaviour of the slime mould Dictyostelium discoideum predicted by a model for cyclic AMP signalling. Nature 313, 590–592 (1985). https://doi.org/10.1038/313590a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/313590a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing