Abstract
The globin gene family represents an attractive system for the study of gene regulation during mammalian development, as its expression is subject to both tissue-specific and temporal regulation. While many aspects of globin gene structure and expression have been described extensively1, relatively little is known about the cis-acting DNA sequences involved in the developmental regulation of globin gene expression. To begin to experimentally define these regulatory sequences, we have taken the approach of introducing cloned globin genes into the mouse germ line and examining their expression in the resulting transgenic animals2,3. Here we describe a series of transgenic mice carrying a hybrid mouse/human adult β-globin gene, several of which express the gene exclusively or predominantly in erythroid tissues. These studies demonstrate that regulatory sequences closely linked to the β-globin gene are sufficient to specify a correct pattern of tissue-specific expression in a developing mouse, when the gene is integrated at a subset of foreign chromosomal positions.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Collins, F. S. & Weissman, S. M. Prog. Nucleic Acids Res. 31, 315–462 (1984).
Costantini, F. & Lacy, E. Nature 294, 92–94 (1981).
Lacy, E., Roberts, S., Evans, E. P., Burtenshaw, M. D. & Costantini, F. D. Cell 34, 343–358 (1983).
Chao, M. V., Mellon, P., Charnay, P., Maniatis, T. & Axel, R. Cell 32, 483–493 (1983).
Gordon, J., Scangos, G. A., Plotkin, D. J., Barbosa, J. A. & Ruddle, F. H. Proc. natn. Acad. Sci. U.S.A. 77, 7380–7384 (1980).
Wagner, E. F., Stewart, T. A. & Mintz, B. Proc. natn. Acad. Sci. U.S.A. 78, 5016–5020 (1981)
Brinster, R. L. et al. Cell 27, 223–231 (1981).
Berk, A. J. & Sharp, P. A. Cell 12, 721–732 (1977).
Weaver, R. & Weissman, C. Nucleic Acids Res. 7, 1175–1193 (1979).
Conkie, D., Kleiman, L., Harrison, P. R. & Paul, J. Expl Cell Res. 93, 315–324 (1975).
Wright, S., deBoer, E., Grosveld, F. G. & Flavell, R. A. Nature 305, 333–336 (1983).
Charnay, P. et al. Cell 38, 251–263 (1984).
Wright, S., Rosenthal, A., Flavell, R. & Grosveld, F. Cell 38, 265–273 (1984).
Palmiter, R. D., Norstedt, G., Gelinas, R. E., Hammer, R. E. & Brinster, R. L. Science 222, 809–814 (1983).
Krumlauf, R., Hammer, R., Tilghman, S. & Brinster, R. Molec. cell. Biol., (submitted).
McKnight, G. S., Kuenzel, E. A., Hammer, R. E. & Brinster, R. L. Cell 34, 335–341 (1983).
Jaenisch, R. et al. Cell 24, 519–529 (1981).
Stewart, T. A., Wagner, E. F. & Mintz, B. Science 217, 1046–1048 (1982).
Humphries, R. K. et al. in Eucaryotic Gene Expression (eds Kumar, A., Goldstein, A. L. & Bahouney, G. V.) (Plenum, New York, 1983).
Brinster, R. L. et al. Nature 306, 332–336 (1983).
Storb, U., O'Brien, R. L., McMullen, M. D., Gollahon, K. A. & Brinster, R. L. Nature 310, 238–240 (1984).
Grosschedl, R., Weaver, D., Baltimore, D. & Costantini, F. Cell 38, 647–658 (1984).
Swift, G. H., Hammer, R. E., MacDonald, R. J. & Brinster, R. L. Cell 38, 639–646 (1984).
Russell, E. S. Adv. Genet. 20, 357–459 (1979).
Scheller, R. H., Costantini, F. D., Kozlowski, M. R., Britten, R. J. & Davidson, E. H. Cell 15, 189–203 (1978).
Thomas, P. S. Proc. natn. Acad. Sci. U.S.A. 77, 5201–5205 (1980).
Rougeon, F. & Mach, B. Gene 1, 229–239 (1977).
Chirgwin, J., Przybyla, A., MacDonald, R. & Rutter, W.J. Biochemistry 18, 5294–5299 (1979).
Maxam, A. M. & Gilbert, W. Meth. Enzym. 65, 499–560 (1980).
Humphries, S., Windass, J. & Williamson, R. Cell 7, 267–277 (1976).
Treisman, R., Proudfoot, N. J., Shander, M. & Maniatis, T. Cell 29, 903–911 (1982).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Chada, K., Magram, J., Raphael, K. et al. Specific expression of a foreign β-globin gene in erythroid cells of transgenic mice. Nature 314, 377–380 (1985). https://doi.org/10.1038/314377a0
Received:
Accepted:
Issue date:
DOI: https://doi.org/10.1038/314377a0
This article is cited by
-
Positive selection of DNA-protein interactions in mammalian cells through phenotypic coupling with retrovirus production
Nature Structural & Molecular Biology (2009)
-
Advances in High-capacity Extrachromosomal Vector Technology: Episomal Maintenance, Vector Delivery, and Transgene Expression
Molecular Therapy (2008)
-
Artificial chromosome-based transgenes in the study of genome function
Mammalian Genome (2006)
-
Defective haematopoiesis in fetal liver resulting from inactivation of the EKLF gene
Nature (1995)
-
Reporter genes in transgenic mice
Transgenic Research (1994)