Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Smooth muscle α-actin is a transformation-sensitive marker for mouse NIH 3T3 and Rat-2 cells

Abstract

Heteroploid mouse NIH 3T3 fibroblasts and several rat fibroblast strains (Rat-1, Rat-2 and REF-52) are cell lines of special interest in the field of carcinogenesis because of their extensive use as normal cells in transformation assays for putative cancer-causing genes. Exposure of these cells to carcinogenic chemicals or oncogenic DNA produces anchorage-independent cells with retracted cytoplasms that lack actin cables1–7. All human fibroblast strains, normal and transformed, synthesize two electrophoretic forms of actin (β- and γ-actin)8–10. In contrast, we discovered that early-passage mouse and rat strains synthesize abundant amounts of each of the three electrophoretic forms of actin (α-, β- and γ-actin) but mouse and rat cancer cells express only β- and γ-actins. We now show that in NIH 3T3 and Rat-2 fibroblasts a third actin, the smooth muscle α isoform, is abundantly co-expressed with β-and γ-actin. In every instance tested following transformation to tumorigenicity, the accumulation of a-actin messenger RNA and α-actin synthesis was greatly inhibited. Shutdown of α-actin expression thus appears to be a reproducible transformation-sensitive marker in rodent fibroblasts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Topp, W. C. Virology 113, 408–411 (1981).

    Article  CAS  Google Scholar 

  2. Aaronson, S. A. & Todaro, G. J. J. cell. Physiol. 72, 141–148 (1968).

    Article  CAS  Google Scholar 

  3. Land, H., Parada, L. F. & Weinberg, R. A. Nature 304, 596–602 (1983).

    Article  ADS  CAS  Google Scholar 

  4. Tabin, C. J. et al. Nature 300, 143–149 (1982).

    Article  ADS  CAS  Google Scholar 

  5. Parker, R. C., Varmus, H. E. & Bishop, J. M. Cell 37, 131–139 (1984).

    Article  CAS  Google Scholar 

  6. Eva, A., Tronick, S. R., Gol, R. A., Pierce, J. H. & Aaronson, S. A. Proc. natn. Acad. Sci. U.S.A., 80, 4926–4930 (1983).

    Article  ADS  CAS  Google Scholar 

  7. Pollack, R., Osborn, M. & Weber, K. Proc. natn. Acad. Sci. U.S.A. 72, 994–998 (1975).

    Article  ADS  CAS  Google Scholar 

  8. Leavitt, J. et al. Cell 28, 259–268 (1982).

    Article  CAS  Google Scholar 

  9. Leavitt, J. & Kakunaga, T. J. biol. Chem. 255, 1650–1661 (1980).

    CAS  PubMed  Google Scholar 

  10. Leavitt, J., Leavitt, A. & Attallah, A. J. biol. Chem. 255, 4984–4987 (1980).

    CAS  PubMed  Google Scholar 

  11. Latter, G. I., Burbeck, S., Fleming, J. Leavitt, J. clin. Chem. 30, 1925–1932 (1985).

    Google Scholar 

  12. Jariwalla, R. J., Aurelian, L. & Ts'o, P. O. P. Proc. natn. Acad. Sci. U.S.A. 80, 5902–5906 (1983).

    Article  ADS  CAS  Google Scholar 

  13. Clanton, D. J., Jariwalla, R. J., Kress, C. & Rosenthal, L. Proc. natn. Acad. Sci. U.S.A. 80, 5107–5111 (1983).

    Article  ADS  Google Scholar 

  14. Franza, B. R. & Garrels, J. I. Cancer Cells 1, 137–146 (1984).

    CAS  Google Scholar 

  15. Gunning, P., Ponte, P., Kedes, L., Hickey, R. J. & Skoultchi, A. I. Cell 36, 709–715 (1984).

    Article  CAS  Google Scholar 

  16. Ponte, P., Gunning, P., Blau, H. & Kedes, L. Molec. cell. Biol. 3, 1783–1791 (1983).

    Article  CAS  Google Scholar 

  17. Garrels, J. I. & Gibson, W. Cell 9, 793–805 (1976).

    Article  CAS  Google Scholar 

  18. Hunter, T. & Garrels, J. I. Cell 12, 767–781 (1977).

    Article  CAS  Google Scholar 

  19. Vandekerckhove, J. & Weber, K. J. molec. Biol. 126, 783–802 (1978).

    Article  CAS  Google Scholar 

  20. Vandekerckhove, J. Weber, K. Eur. J. Biochem. 113, 595–603 (1981).

    Article  CAS  Google Scholar 

  21. Matsumura, F., Lin, J. J.-C., Yamashiro-Matsumura, S., Thomas, G. P. & Topp, W. C. J. biol. Chem. 258, 13954–13964 (1983).

    CAS  PubMed  Google Scholar 

  22. Leavitt, J., Barren, J. C., Crawford, B. D. & Ts'o, P. O. P. Nature 271, 262–265 (1978).

    Article  ADS  CAS  Google Scholar 

  23. Naharro, G., Robbins, K. C. & Reddy, E. P. Science 223, 63–66 (1984).

    Article  ADS  CAS  Google Scholar 

  24. Goldstein, D. & Leavitt, J. Cancer Res. (in the press).

  25. Vanderkerckhove, J., Leavitt, J., Kakunaga, T. Weber, K. Cell 22, 893–899 (1980).

    Article  Google Scholar 

  26. Friedman, E., Verderame, M., Winawer, S. & Pollack, R. Cancer Res. 44, 3040–3050 (1984).

    CAS  PubMed  Google Scholar 

  27. Gunning, P. et al. Molec. cell. Biol. 3, 787–795 (1983).

    Article  CAS  Google Scholar 

  28. Gunning, P., Mohun, T., Ng, S-Y. Ponte, P. & Kedes, L. J. molec. Evol. 20, 202–214 (1984).

    Article  ADS  CAS  Google Scholar 

  29. Rigby, P. W., Dieckmann, M., Rhodes, C. & Berg, P. J. Molec. cell. Biol. 113, 237–251 (1977).

    CAS  Google Scholar 

  30. Denhardt, D. T. Biochem. biophys. Res. Commun. 23, 641–646 (1966).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leavitt, J., Gunning, P., Kedes, L. et al. Smooth muscle α-actin is a transformation-sensitive marker for mouse NIH 3T3 and Rat-2 cells. Nature 316, 840–842 (1985). https://doi.org/10.1038/316840a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/316840a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing