Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Silicon coordination changes from 4-fold to 6-fold on devitrification of silicon phosphate glass

Abstract

4-Fold oxygen coordinated tetrahedral silicon (IVSi) is the common building block in silicas and silicates. However, 17 crystallographically well-characterized inorganic silicates are known in which silicon exists in 6-fold oxygen octahedral coordination1. The most notable is stishovite, a high-pressure SiO2 polymorph2,3. An interesting question is whether differences in silicon oxygen coordination between liquid and solid silicates impose a barrier to nucleation. One such case is stishovite (VISi) which cannot be synthesized from SiO2 with IVSi at ambient pressures4,5. That such an apparent nucleation barrier is not limited to silicon oxygen coordination is shown by aluminium. Thus, Jadeite (NaAlSi2O6) with VIAl will not precipitate from its isochemical glass, in which only IVAl has been proven to exist, except when subjected to pressures >60 kbar6,7. To test if transitions of silicon coordination from 4- to 6-fold impose, in general, a barrier to nucleation, we studied the SiO2–P2O5 system. X-ray diffraction studies on one of the phases in this system, SiO2·P2O5, show the presence of VISi only8. The aforementioned examples indicate that the silicon-phosphate glass from which this phase precipitates will also contain VISi, as no external pressure is used. Zachariasen9, on the other hand, has argued against 6-fold coordination in glasses, predicting that octahedral coordination would force periodicity on the lattice, thereby disrupting the vitreous state. Our 29Si MAS (magic angle spinning) NMR results show that the SiO2–P2O5 glass contains only IVSi which on devitrification at ambient pressures transforms to crystalline silicon-phosphate with VISi.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Liebau, F. Structural Chemistry of Silicates 347 (Springer, Berlin, 1985).

    Book  Google Scholar 

  2. Baur, W. H. & Khan, A. A. Acta crystallogr. B27, 2133–2139 (1977).

    Article  Google Scholar 

  3. Kirkpatrick, R. J., Smith, K. A., Schramm, S., Turner, G. & Yang, W.-H. A. Rev. Earth planet Sci. 13, 29–47 (1985).

    Article  ADS  CAS  Google Scholar 

  4. Stishov, S. M. & Popova, S. V. Geokhimiya 10, 837–839 (1961).

    Google Scholar 

  5. Frondel, C. The System of Mineralogy Vol. 3 (Wiley, New York, 1962).

    Google Scholar 

  6. De Jong, B. H. W. S., Schramm, C. M. & Parziale, V. E. Geochim. cosmochim. Acta 47, 1223–1236 (1983).

    Article  ADS  CAS  Google Scholar 

  7. Ohtani, E., Taulelle, F. & Angell, C. A. Nature 314, 78–81 (1985).

    Article  ADS  CAS  Google Scholar 

  8. Tillmans, E., Gebert, W. & Baur, W. H. J. Solid State Chem. 7, 69–84 (1973).

    Article  ADS  Google Scholar 

  9. Zachariasen, W. H. J. Am. chem. Soc. 54, 3841–3851 (1932).

    Article  CAS  Google Scholar 

  10. Makart, H. Helv. chim. Acta 50, 399–405 (1967).

    Article  CAS  Google Scholar 

  11. Levi, G. R. & Peyronel, G. Z. Kristallogr. 92, 190–209 (1935).

    CAS  Google Scholar 

  12. Vollenkle, H., Wittman, A. & Nowotny, H. Mh. Chem. 94, 956–963 (1963).

    Google Scholar 

  13. Mayer, H. Mh. Chem. 105, 46–54 (1974).

    CAS  Google Scholar 

  14. Tien, T. Y. & Hummel, F. A. J. Am. Ceram. Soc. 45, 422–424 (1962).

    Article  CAS  Google Scholar 

  15. Liebau, F., Bissert, G. & Koppen, N. Z. anorg. allg. Chem. 359, 131–134 (1968).

    Article  Google Scholar 

  16. De Jong, B. H. W. S., Schramm, C. M. & Parziale, V. E. J. Am. chem. Soc. 106, 4396–4402 (1984).

    Article  CAS  Google Scholar 

  17. Veeman, W. S., Menger, E. M., Ritchey, W. & de Boer, E. Macromolecules 12, 924–927 ( 1979).

    Article  ADS  CAS  Google Scholar 

  18. Smith, J. W. & Blackwell, C. S. Nature 303, 223–225 (1983).

    Article  ADS  CAS  Google Scholar 

  19. Grimmer, A. E. et al. Z. chem. 20 453 (1980).

    Article  CAS  Google Scholar 

  20. Tropp, J., Blumenthal, N. C. & Waugh, J. S. J. Am. chem. Soc. 105, 22–26 (1983).

    Article  CAS  Google Scholar 

  21. Van Wazer, J. R., Callis, C. F., Shoolery, J. N. & Jones, R. C. J. Am. chem. Soc. 78, 5715–5726 (1956).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weeding, T., de Jong, B., Veeman, W. et al. Silicon coordination changes from 4-fold to 6-fold on devitrification of silicon phosphate glass. Nature 318, 352–353 (1985). https://doi.org/10.1038/318352a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/318352a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing