Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mechanism of aqueous dissolution of silicate glasses yielded by fission tracks

Abstract

Controversy continues over the mechanism of the aqueous corrosion of silicate glasses, largely because the processes by which the superficial hydrated layer is formed have not been clearly identified1. Two alternative models are current. One view2–4 is that mobile ions in the glass network (such as Na+, Li+ and K+) are exchanged with hydrogen ions (such as H+ and H3O+) and even H2O in the solution5; the other is that the hydrated layer results from the re-precipitation from solution of dissolved network material6–12. The first model is thought appropriate for simple man-made glasses and the second for more complex and natural glasses. We report here an optical and scanning electron microscope study of the corrosion of various borosilicate glasses irradiated by fission fragments. For all glass-solution combinations studied, we find that the hydrated layer embodies relics of the fission tracks, suggesting that this layer is mainly formed by in situ replacement, but in some cases a step re-precipitation is also apparent.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Scholtze, H. J. non-cryst. Solids 52, 91–103 (1982).

    Article  ADS  Google Scholar 

  2. Doremus, R. H. J. non-cryst. Solids 19, 137–144 (1975).

    Article  ADS  CAS  Google Scholar 

  3. Lanford, W. A., Davis, K., Lamarche, P., Laursen, T. & Groleau, R. J. non-cryst. Solids 33, 249–266 (1979).

    Article  ADS  CAS  Google Scholar 

  4. Smit, W., Stein, H. N. J. non-cryst. Solids 34, 357–370 (1979).

    Article  ADS  CAS  Google Scholar 

  5. Smets, B. M. J., Lommen, T. P. A. Phys. Chem. Glasses 24, 35–36 (1983).

    CAS  Google Scholar 

  6. Nogues, J.-L. thesis, Univ. Montpellier (1984).

  7. Crovisier, J.-L., Fritz, B., Grambow, B. & Eberhart, J.-P. MRS Proc. Symp. Scientific Basis of Nuclear Waste Management, Stockholm, September 1985 (North-Holland, Amsterdam, in the press).

  8. Lutze, W., Malow, G., Ewing, R. C., Jercinovic, M. J. & Keil, K. Nature 314, 252–255 (1985).

    Article  ADS  CAS  Google Scholar 

  9. Crovisier, J.-L., Thomassin, J.-H., Juteau, T. & Eberhart, J.-P. Geochim. cosmochim. Acta 47, 377–387 (1983).

    Article  ADS  CAS  Google Scholar 

  10. Grambow, B. MRS Proc. 11, 93–102 (1983).

    Article  Google Scholar 

  11. Bates, J. K., Jardine, L. J. & Steindler, M. J. Science 218, 51–54 (1982).

    Article  ADS  CAS  Google Scholar 

  12. Thomassin, J.-H. thesis, Univ. Orléans (1984).

  13. Fleischer, R. L., Price, P. B. & Walker, R. M. Nuclear Tracks in Solids (University of California, 1975).

    Google Scholar 

  14. Smets, B. M. J., Lommen, T. P. A. Phys. Chem. Glasses 23(3), 83–87 (1982).

    CAS  Google Scholar 

  15. Della Mea, G., Dran, J.-C., Petit, J.-C., Bezzon, G. & Rossi-Alvarez, C. Nucl. Instrum. Meth. 218, 493–499 (1983).

    Article  CAS  Google Scholar 

  16. Crank, F. The Mathematics of Diffusion (University of Oxford Press, 1978).

    MATH  Google Scholar 

  17. Petit, J.-C., Langevin, Y., Lameille, J.-M. & Dran, J.-C. MRS Proc. 5, 203–210 (1982).

    Google Scholar 

  18. Lutze, W., Malow, G. & Rabe, H. MRS Proc. 15, 37–45 (1983).

    Article  CAS  Google Scholar 

  19. Petit, J.-C. thesis, Univ. Paris, Orsay (1982).

  20. Arnold, G. W., Petit, J.-C. Nucl. Instrum. Meth. 209/210, 1071–1077 (1983).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dran, JC., Petit, JC. & Brousse, C. Mechanism of aqueous dissolution of silicate glasses yielded by fission tracks. Nature 319, 485–487 (1986). https://doi.org/10.1038/319485a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/319485a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing