Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Two roles for guanine nucleotides in the stimulus-secretion sequence of neutrophils

Abstract

The term ’stimulus-secretion coupling‘ has, since first enunciated1, been held to involve the mobilization of cytosol Ca2+, which in turn is sufficient to trigger exocytotic secretory processes in metabolically competent cells. However, recent studies on a wide range of secretory cell types indicate that a role for Ca2+ can be obviated: examples are stimulation with phorbol ester (phorbol myristate acetate, PMA)2,3 which causes the activation of protein kinase C4 or the stimulation of platelets with collagen5. Ca2+-independent exocytosis also occurs when analogues of GTP are injected through the lumen of patch pipettes directly into the cytosol of mast cells6. The results presented here suggest that GTP analogues can activate secretory processes by actions at two distinct locations: one may be at the level of the receptor7 involving the activation of polyphos-phoinositide (PPI) phosphodiesterase8 with consequent liberation of diacylglycerol (DG)9; the other involves direct activation of the exocytotic mechanism. These conclusions are based on measurements of exocytotic secretion from permeabilized neutrophils into which we have been able to introduce, individually and in combination, Ca2+ chelators (EGTA and BAPTA), Ca2+ (buffered at micromolar concentrations with EGTA), analogues of GTP and GDP and the direct activator of protein kinase C, PMA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Douglas, W. W. Br. J. Pharmac. 34, 451–474 (1968).

    Article  CAS  Google Scholar 

  2. Sha'afi, R. I. et al. Biochem. biophys. Res. Commun. 114, 638–645 (1983).

    Article  CAS  PubMed  Google Scholar 

  3. Di Virgilio, F., Lew, D. P. & Pozzan, T. Nature 310, 691–693 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Nishizuka, Y. Nature 308, 693–698 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Rink, T. J. & Sanchez, A. Biochem. J. 222, 833–836 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fernandez, J. M., Neher, E. & Gomperts, B. D. Nature 312, 453–455 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Gomperts, B. D. Nature 306, 64–66 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Cockcroft, S. & Gomperts, B. D. Nature 314, 534–536 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Cockcroft, S., Baldwin, J. M. & Allan, D. Biochem. J. 221, 477–482 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wyke, A. M., Impraim, C. C., Knutton, S. & Pasternak, C. A. Biochem. J. 190, 625–638 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bachi, T., Deas, J. E. & Howe, C. Cell Surface Rev. 2, 83–127 (1977).

    Google Scholar 

  12. Haywood, A. M. J. molec. Biol. 83, 427–436 (1974).

    Article  CAS  PubMed  Google Scholar 

  13. Foster, K. A., Gill, K., Micklem, C. A. & Pasternak, C. A. Biochem. J. 190, 639–646 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Impraim, C. C., Foster, K., Micklem, K. J. & Pasternak, C. A. Biochem. J. 186, 847–860 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gomperts, B. D., Baldwin, J. M. & Micklem, K. J. Biochem. J. 210, 737–745 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Knight, D. E. & Baker, P. F. J. Membrane Biol. 68, 107–140 (1982).

    Article  CAS  Google Scholar 

  17. Knight, D. E., Niggli, V. & Scrutton, M. C. Eur. J. Biochem. 143, 437–446 (1984).

    Article  CAS  PubMed  Google Scholar 

  18. Yaseen, M. A., Pedley, K. C. & Howell, S. L. Biochem. J. 206, 81–87 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Barrowman, M. M., Cockcroft, S. & Gomperts, B. D. J. Physiol., Lond. (submitted).

  20. Haslam, R. J. & Davidson, M. M. L. FEBS. Lett. 174, 90–95 (1984).

    Article  CAS  PubMed  Google Scholar 

  21. Baker, P. F. Nature 310, 629–630 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Cockcroft, S., Bennett, J. P. & Gomperts, B. D. Biochem. J. 200, 501–508 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Neidel, J. E., Kuhn, L. J. & Vandenbark, G. R. Proc. natn. Acad. Sci. U.S.A. 80, 263–265 (1983).

    Google Scholar 

  24. Cassel, D. & Pfeuffer, T. Proc. natn. Acad. Sci. U.S.A. 75, 2669–2673 (1978).

    Article  ADS  CAS  Google Scholar 

  25. Northup, J. K. et al. Proc. natn. Acad. Sci. U.S.A. 77, 6516–6520 (1980).

    Article  ADS  CAS  Google Scholar 

  26. Bokoch, G. M., Katada, T., Northup, J. K., Hewlett, E. L. & Gilman, A. G. J. biol. Chem. 258, 2072–2075 (1983).

    CAS  PubMed  Google Scholar 

  27. Verghese, M. W., Smith, C. D. & Snydermann, R. Biochem. biophys. Res. Commun. 127, 450–457 (1985).

    Article  CAS  PubMed  Google Scholar 

  28. Smith, C. D., Lane, B. C., Kusaka, I., Verghese, M. W. & Snydermann, R. J. biol. Chem. 260, 5875–5879 (1985).

    CAS  PubMed  Google Scholar 

  29. Becker, E. L. et al. J. Cell Biol. 100, 1641–1646 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Molski, T. F. P. et al. Biochem. biophys. Res. Commun. 124, 644–650 (1984).

    Article  CAS  PubMed  Google Scholar 

  31. Goldman, D. W., Chang, F.-H., Gifford, L. A., Goetzl, E. J. & Bourne, H. R. J. exp. Med. 162, 145–156 (1985).

    Article  CAS  PubMed  Google Scholar 

  32. Amsterdam, A., Ohad, I. & Schramm, M. J. Cell Biol. 41, 753–773 (1969).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Palade, G. Science 189, 347–358 (1975).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Chandler, D. E., Bennett, J. P. & Gomperts, B. D. J. Ultrastruct. Res. 83, 221–232 (1983).

    Article  Google Scholar 

  35. Parsegian, V. A., Rand, R. P. & Gingell, D. Ciba Fdn Symp. 103, 9–27 (1984).

    CAS  Google Scholar 

  36. Paiement, J. Biochim. biophys. Acta 777, 274–282; Expl Cell Res. 151, 354–366 (1984).

    Article  CAS  PubMed  Google Scholar 

  37. Sandoval, I. V. & Weber, K. J. biol. Chem. 255, 6966–6974 (1980).

    CAS  PubMed  Google Scholar 

  38. Bennett, J. P., Cockcroft, S. & Gomperts, B. D. Biochim. biophys. Acta 601, 584–591 (1980).

    Article  CAS  PubMed  Google Scholar 

  39. Anderegg, G. Helv. chim. Acta 47, 1801–1814 (1964).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barrowman, M., Cockcroft, S. & Gomperts, B. Two roles for guanine nucleotides in the stimulus-secretion sequence of neutrophils. Nature 319, 504–507 (1986). https://doi.org/10.1038/319504a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/319504a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing