Abstract
Syngenetic mineral inclusions in diamonds provide the best means of determining their origin. Among such inclusions, the peridotitic paragenesis of olivine, orthopyroxene and chrome-pyrope garnet is on average far more abundant than the eclogitic paragenesis of pyrope–almandine garnet and omphacitic clinopyroxene1–3. Diamonds of peridotitic paragenesis from the ∼ 100-Myr-old Kimberley and Finsch kimberlites in southern Africa were previously shown to have originated in 150–200-km-thick lithosphere beneath the Kaapvaal craton ∼3,300 Myr ago4,5. At a few localities, such as the Premier kimberlite in southern Africa and the Argyle lamproite in northwestern Australia, diamonds of eclogitic paragenesis predominate6–8, allowing recovery of sufficient material for complementary analysis, the results of which are reported here. Eclogitic garnet and clinopyroxene inclusions in Premier and Argyle diamonds yield Sm–Nd isochron ages of 1,150 and 1,580 Myr respectively, compared with host diatreme emplacement ages9,10 of 1,100–1,200 Myr. Eclogitic inclusion ages and precursor isotopic signatures indicate a second genetically distinct origin of diamonds, apparently related in time and space to kimberlite or lamproite magmatism.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Meyer, H. O. A. & Tsai, H.-M. Miner. Sci. Engng 8, 242–261 (1976).
Yefimova, E. S. & Sobolev, N. V. Dokl. Akad. Nauk SSSR 237, 1475–1478 (1977).
Hawthorne, J. B., Gurney, J. J. & Harris, J. W. Ext. Abstr. 12th int. miner. Ass. Meet. (Novosibirsk, 1978).
Richardson, S. H., Gurney, J. J., Erlank, A. J. & Harris, J. W. Nature 310, 198–202 (1984).
Boyd, F. R., Gurney, J. J. & Richardson, S. H. Nature 315, 387–389 (1985).
Gurney, J. J., Harris, J. W., Rickard, R. S. & Moore, R. O. Trans. geol. Soc. S. Afr. (in the press).
Hall, A. E. & Smith, C. B. in Kimberlite Occurrence and Origin: A Basis for Conceptual Models in Exploration (eds Glover,. J. E. & Harris, P. G.) 167–212 (University of Western Australia, Nedlands, 1984).
Harris, J. W. & Collins, A. T. Ind. Diam. Rev. 45, 128–130 (1985).
Kramers, J. D. Earth planet. Sci. Lett. 42, 58–70 (1979).
Skinner, E. M. W., Smith, C. B., Allsopp, H. L., Scott-Smith, B. H. & Dawsqn, J. B. Trans. geol. Soc. S. Afr. (in the press).
Barrett, D. R. & Allsopp, H. L. Extr. Abstr. 1st int. Kimberlite Conf. 23 (University of Cape Town, 1973).
Allsopp, H. L., Burger, A. J. & Van Zyl, C. Earth planet. Sci. Lett. 3, 161–166 (1967).
Welke, H. J., Allsopp, H. L. & Harris, J. W. Nature 252, 35–37 (1974).
Smith, C. B. thesis, Univ. Witwatersrand (1983).
Jones, R. A. thesis, Univ. Leeds (1984).
Atkinson, W. J., Hughes, F. E. & Smith, C. B. in Kimberlites I: Kimberlites and Related Rocks (ed. Kornprobst, J.) 195–224 (Elsevier, Amsterdam, 1984).
Bofinger, V. M. thesis, Australian National Univ. (1967).
Plumb, K. A., Derrick, G. M., Needham, R. S. & Shaw, R. D. in Precambrian of the Southern Hemisphere (ed. Hunter, D. R.) 205–307 (Elsevier, Amsterdam, 1981).
Birck, J. L. Chem. Geol. (in the press).
Basu, A. R. & Tatsumoto, M. Contr. Miner. Petrol. 75, 43–54 (1980).
Deines, P., Gurney, J. J. & Harris, J. W. Geochim. cosmochim. Acta 48, 325–342 (1984).
Des Marais, D. J. & Moore, J. G. Earth planet. Sci. Lett. 69, 43–57 (1984).
Galimov, E. M. Geochem. Int. 22, 118–142 (1985).
Richardson, S. H., Erlank, A. J. & Hart, S. R. Earth planet. Sci. Lett 75, 116–128 (1985).
McCulloch, M. T., Jaques, A. L., Nelson, D. R. & Lewis, J. D. Nature 302, 400–403 (1983).
Fraser, K. J., Hawkesworth, C. J., Erlank, A. J., Mitchell, R. H. & Scott-Smith, B. H. Earth planet. Sci. Lett. 76, 57–70 (1985).
Gurney, J. J., Hams, J. W. & Rickard, R. S. in Kimberlites II: The Mantle and Crust-Mantle Relationships (ed. Kornprobst, J.) 1–9 (Elsevier, Amsterdam, 1984).
Moore, R. O. & Gurney, J. J. Nature 318, 553–555 (1985).
Haggerty, S. E. Nature 320, 34–38 (1986).
Davies, G. Nature 290, 40–41 (1981).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Richardson, S. Latter-day origin of diamonds of eclogitic paragenesis. Nature 322, 623–626 (1986). https://doi.org/10.1038/322623a0
Received:
Accepted:
Issue date:
DOI: https://doi.org/10.1038/322623a0
This article is cited by
-
Imperfections in natural diamond: the key to understanding diamond genesis and the mantle
La Rivista del Nuovo Cimento (2023)
-
The behaviour of platelets in natural diamonds and the development of a new mantle thermometer
Contributions to Mineralogy and Petrology (2018)
-
Archaean and Proterozoic diamond growth from contrasting styles of large-scale magmatism
Nature Communications (2017)
-
Mineral inclusions in diamonds may be synchronous but not syngenetic
Nature Communications (2017)
-
Diamonds in the Attawapiskat area of the Superior craton (Canada): evidence for a major diamond-forming event younger than 1.1 Ga
Contributions to Mineralogy and Petrology (2014)