Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Purified dihydropyridine-binding site from skeletal muscle t-tubules is a functional calcium channel

Abstract

Many excitable cells contain at least two different voltage-dependent Ca channels (L- and T-type)1–3. The cardiac, slow, L-type Ca channel is further modulated by cyclic AMP-dependent phosphorylation4–7, which increases the probability of it being open5,7, and is readily blocked by Ca channel blockers including dihydro-pyridines and phenylalkylamines8–11. The tritiated congeners of these blockers bind in vitro to sites which have the same pharmacological characteristics as those observed in vivol2–l4 that is, stereospecific and allosteric interaction between distinct sites. The dihydropyridine-binding site purified from skeletal muscle t-tubules15 contains three peptides of relative molecular mass (Mr) 142,000 (142K), 56K and 31K. The cAMP kinase incorporates one mol phosphate per mol of the 142K peptide and binding of (+)PN-200/110, a potent Ca antagonist, is allosterically affected by D-cis-diltiazem and verapamil. The purified dihydropyridine-receptor complex has also been incorporated into phospholipid bilayer membranes. Here, we show for the first time that the complex can be reconstituted to form a functional 20-pS Ca channel that retains the principal regulatory, biochemical and pharmacological properties of membrane-bound L-type Ca channels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Carbone, E. & Lux, H. D. Nature 310, 501–502 (1984).

    Article  ADS  CAS  Google Scholar 

  2. Bean, B. P. J. gen. Physiol. 86, 1–30 (1985).

    Article  ADS  CAS  Google Scholar 

  3. Nilius, B., Hess, P., Lansman, J. B. & Tsien, R. W. Nature 316, 443–446 (1986).

    Article  Google Scholar 

  4. Osterrieder, W. et al. Nature 298, 576–578 (1982).

    Article  ADS  CAS  Google Scholar 

  5. Cachelin, A. B., de Peyer, J. E., Kokubun, S. & Reuter, H. Nature 304, 462–464 (1983).

    Article  ADS  CAS  Google Scholar 

  6. Bean, W. P., Nowycky, M. C. & Tsien, R. W. Nature 307, 371–375 (1984).

    Article  ADS  CAS  Google Scholar 

  7. Brum, G., Osterrieder, E. & Trautwein, W. Pflügers Arch. ges. Physiol. 401, 111–118 (1984).

    Article  CAS  Google Scholar 

  8. Hess, P., Lansman, J. B. & Tsien, R. W. Nature 311, 538–544 (1984).

    Article  ADS  CAS  Google Scholar 

  9. Sanguinetti, M. C. & Kass, R. S. Circulation Res. 55, 336–348 (1984).

    Article  CAS  Google Scholar 

  10. McDonald, T. F., Pelzer, D. & Trautwein, W. J. Physiol., Lond. 352, 217–241 (1984).

    Article  CAS  Google Scholar 

  11. Cavalié, A., Pelzer, D. & Trautwein, W. J. Physiol., Lond. 358, 59P (1985).

    Google Scholar 

  12. Glossmann, H., Ferry, D. R., Goll, A., Striessnig, J. & Zernig, G. Arzneim-Forschung/Drug Res. 35, 1917–1935 (1985).

    CAS  Google Scholar 

  13. Snyder, S. H. & Reynolds, I. J. New Engl. J. Med. 313, 995–1002 (1985).

    Article  CAS  Google Scholar 

  14. Ruth, P., Flockerzi, V, v. Nettelbladt, E., Oeken, J. & Hofmann, F. Eur. J. Biochem. 150, 313–322 (1985).

    Article  CAS  Google Scholar 

  15. Curtis, B. M. & Catterall, W. A. Biochemistry 23, 2113–2118 (1984).

    Article  CAS  Google Scholar 

  16. Hanke, W., Methfessel, C., Wilmsen, U. & Boheim, G. C. Biolectrochem. Bioenerget. 12, 329–339 (1984).

    Article  CAS  Google Scholar 

  17. Ferry, D. R., Kämpf, K., Goll, A. & Glossmann, H. EMBO J. 4, 1933–1940 (1985).

    Article  CAS  Google Scholar 

  18. Curtis, B. M., Catterall, W. A. Proc. natn. Acad. Sci. U.S.A. 82, 2528–2532 (1985).

    Article  ADS  CAS  Google Scholar 

  19. Hosey, M. M., Borsotto, M. & Lazdunski, M. Proc. natn. Acad. Sci. U.S.A. (in the press).

  20. Borsotto, M., Barhanin, J., Norman, R. I. & Lazdunski, M. Biochem. biophys. Res. Commun. 122, 1357–1366 (1984).

    Article  CAS  Google Scholar 

  21. Norman, R. I., Borsotto, M., Fossett, M., Lazdunski, M. & Ellory, J. C. Biochem. biophys. Res. Commun. 111, 878–883 (1983).

    Article  CAS  Google Scholar 

  22. Borsotto, M., Norman, R. I., Fosset, M. & Lazdunski, M. Eur. J. Biochem. 142, 449–455 (1984).

    Article  CAS  Google Scholar 

  23. Ruth, P., Flockerzi, V., Oeken, H.-J. & Hofmann, F. Eur. J. Biochem. 155, 613–620 (1986).

    Article  CAS  Google Scholar 

  24. Affolter, H. & Coronado, R. Biophys. J. 48, 341–347 (1985).

    Article  CAS  Google Scholar 

  25. Rosenberg, R. L., Hess, P., Tsien, R. W., Smilowitz, H. & Reeves, J. P. Science 213,1564–1566 (1986).

    Article  ADS  Google Scholar 

  26. Ehrlich, B. E., Schen, C. R., Garcia, M. L. & Kaczorowski, G. J. Proc. natn. Acad. Sci. U.S.A. 83, 193–197 (1986).

    Article  ADS  CAS  Google Scholar 

  27. Cavlié, A., Ochi, R., Pelzer, D. & Trautwein, W. Pflügers Arch. ges. Physiol. 398, 284–297 (1983).

    Article  Google Scholar 

  28. Palade, P. T. & Aimers, W. Pflügers Arch. ges. Physiol. 405, 91–101 (1985).

    Article  CAS  Google Scholar 

  29. Kokubun, S. & Reuter, H. Proc. natn. Acad. Sci. U.S.A. 81, 4824–4827 (1984).

    Article  ADS  CAS  Google Scholar 

  30. Ochi, R., Hino, N. & Niimi, Y. Proc. Japan Acad. 60, B, 153–156 (1984).

    Article  Google Scholar 

  31. Kameyama, M., Hofmann, F. & Trautwein, W. Pflügers Arch. ges. Physiol 405, 285–293 (1985).

    Article  CAS  Google Scholar 

  32. Kameyama, M., Hescheler, J., Hofmann, F. & Trautwein, W. Pflügers Arch, ges Physiol (in the press).

  33. Borsotto, M., Barhanin, J., Fosset, M. & Lazdunski, M. J. biol Chem. 260, 14255–14263 (1985).

    CAS  PubMed  Google Scholar 

  34. Schwartz, L. M., McClesky, E. W. & Aimers, W. Nature 314, 747–751 (1985).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flockerzi, V., Oeken, HJ., Hofmann, F. et al. Purified dihydropyridine-binding site from skeletal muscle t-tubules is a functional calcium channel. Nature 323, 66–68 (1986). https://doi.org/10.1038/323066a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/323066a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing