Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A magmatic heat pump

Abstract

The structures of igneous cumulates can provide valuable clues to inaccessible magmatic processes. Many mafic layers in the Rhum Intrusion have ‘finger structures’1–3 that protrude into the overlying felsic rocks. These structures are attributable to melting of the overlying olivine–feldspar rocks by hot mafic magma emplaced as sills4. The bases of mafic layers contain smooth-bottomed olivine cumulates. Here I show that the heat needed to melt the roof of the layer is carried by rapidly rising light solute released by growth of basal olivine crystals that were deposited by two phase-convection. Compositional convection therefore drives a heat pump transfering heat of fusion from remote growing crystals to those that are melting. This action contrasts with cooling under a refractory roof, which is conduction-limited. The heat pumping principle shows why ultramafic magmas may melt their roofs whereas felsic magmas tend to form upper border zones.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Brown, G. M. Phil. Trans. R. Soc. B240, 1–53 (1956).

    Article  Google Scholar 

  2. Wager, L. R. & Brown, G. M. Layered Igneous Rocks (Freeman, San Francisco, 1967; Oliver & Boyd, London, 1968).

    Google Scholar 

  3. Butcher, A. R., Young, I. M. & Faithfull, J. W. Geol. Mag. 122, 491–502 (1985).

    Article  ADS  Google Scholar 

  4. Morse, S. A., Owens, B. E. & Burcher, A. R. Geol. Mag. (in the press).

  5. Butcher, A. R. Geol. Mag. 122, 503–518 (1985).

    Article  ADS  CAS  Google Scholar 

  6. Grout, F. F. J. geol. 26, 481–499 (1918).

    Article  ADS  CAS  Google Scholar 

  7. Morse, S. A. Geol. Mag. 123, 205–214 (1986).

    Article  ADS  CAS  Google Scholar 

  8. Huppert, H. E. & Sparks, R. S. J. Contr. Miner. Petrol. 75, 279–289 (1980).

    Article  ADS  Google Scholar 

  9. Marsh, B. D. Abstr. Prog. geol. Soc. Am. 17, 653 (1985).

    Google Scholar 

  10. Morse, S. A. Geol. Soc. Am. Mem. 112, 204p (1969).

    Google Scholar 

  11. Tait, S. R., Huppert, H. E. & Sparks, R. S. J. Lithos 17, 139–146 (1984).

    Article  ADS  CAS  Google Scholar 

  12. Morse, S. A. J. geophys. Res. 87, A10–A18 (1982).

    Article  Google Scholar 

  13. Bowen, N. L. Am. J. Sci. 39, 175–191 (1915).

    Article  ADS  CAS  Google Scholar 

  14. Walker, D., Jurewicz, S. & Watson, E. B. Eos 66, 362 (1985).

  15. Morse, S. A. J. Petrol. 27 (in the press).

  16. Ghiorso, M. S. & Carmichael, I. S. E. Contr. Miner. Petrol. 71, 323–342 (1980).

    Article  ADS  CAS  Google Scholar 

  17. Irvine, T. N. Can. J. Earth Sci. 7, 1031–1061 (1970).

    Article  ADS  Google Scholar 

  18. Wager, L. R. & Deer, W. A. Meddr. Grønl. 105, 1–352 (1939).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morse, S. A magmatic heat pump. Nature 324, 658–660 (1986). https://doi.org/10.1038/324658a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/324658a0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing