Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Bacterial activity in the warmer, sulphate-bearing, Archaean oceans

Abstract

In recent marine sediments, bacterial reduction of seawater sulphate is responsible for the formation of diagenetic sulphides, which are typically strongly depleted in 34S relative to source sulphate, and highly variable in their δ 34S values. In contrast, the δ 34S values of Archaean sedimentary sulphides are generally found to be less variable and nearly identical to those of sulphates in the same sedimentary units. This finding has led previous investigators1–4 to suggest that either sulphate-reducing bacteria had yet to develop in Archaean time, (especially before 2.75 billion years ago), and/or Archaean oceans contained much less sulphate (<< lmM compared with the present value of 28 mM), implying that the Archaean atmosphere contained much less free oxygen than the present atmosphere. But the sulphur isotope data on Archaean sediments from 2.6 to 3.5 x 103 Myr old can be better explained if sulphate-reducing bacteria were already active in oceans with temperatures of 30 to 50°C, and containing appreciable amounts (>1 mM) of sulphate, with δ 34S values of +3%

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. 1. Perry, E. C., Monster, J. & Reimer, T. O. Science 171, 1015–1016 (1971). 2. Goodwin, A. M., Monster, J. & Thode, H. G. Econ. Geol. 71, 870–891 (1976). 3. Donnelly, T. H. et al. J. geol. Soc. Ami. 24, 409–420 (1977). 4. Monster, J. et al. Geochim. cosmochim. Acta 43, 405–413 (1979). 5. Claypool, G. E., Holser, W. T., Kaplan, I. R., Sakai, H. & Zak, I. Chem. Geol. 28, 199–260 (1980). 6. Ohmoto, H., Kaiser, C. J. & Geer, K. A. Spec. Publ. geol. Soc. Aust. (in the press). 7. Thode, H. G. & Monster, J. in Fluids in Subsurface Environments (eds Young, A. & Galley, J. E.) 367–377 (Am. Ass. Petrol. Geol. Memoir 4, 1965). 8. Lambert, I. B., Donnelly, T. H., Dunlop, J. S. R. & Groves, D. I. Nature 276,808–811 (1978). 9. Broda, E. The Evolution of Bioenergetic Processes (Pergamon, Oxford, 1975). 10. Schidlowski, M., Haves, J. M. & Kaplan, I. R. in Earth's Earliest Biosphere, Its Origin and Evolution (ed. Schopf, J. W.) 149–186 (Princeton University Press, 1983). 11. Kaplan, I. R. & Rittenberg, S. C. J. gen. Microbiol. 34, 195–212 (1964). 12. Ohmoto, H. & Rye, R. O. in Geochemistry of Hydrothermal Ore Deposits 2nd edn (ed. Barnes, H. L.) 509–576 (Wiley, New York, 1979). 13. Holland, H. D. The Chemical Evolution of the Atmosphere and Oceans (Princeton University Press, 1984). 14. Heinrichs, T. K. & Reimer, T. O. Econ. Geol. 72, 1426–1441 (1977). 15. Vinogradov, V. I., Reimer, T. O., Leites, A. M. & Smelov, S. B. Lithol. Miner. Resources 11,407–420 (1977). 16. Berner, R. A. Geochim. cosmochim. Acta 48, 605–617 (1984). 17. Goldhaber, M. B. & Kaplan, I. R. Soil Sci. 119, 42–55 (1975). 18. Goldhaber, M. B. & Kaplan, I. R. in The Sea Vol. 5, Marine Chemistry (ed. Goldberg, E. D.) 569–655 (Wiley, New York, 1974). 19. Fripp, R. E. P., Donnelly, T. H. & Lambert, I. B. Spec. Publs geol. Soc. S. Afr. 5, 205–208 (1979). 20. Harrison, A. G. & Thode, H. G. Trans. Faraday Soc. 54, 84–92 (1958). 21. Kemp, A. L. W. & Thode, H. G. Geochim. cosmochim. Acta 32, 71–91 (1968). 22. Chambers, L. A., Trudinger, P. A., Smith, J. W. & Burns, M. S. Can. J. Microbiol. 21, 1602–1607 (1975). 23. Thode, H. G. & Goodwin, A. M. Precambr. Res. 20, 337–356 (1983). 24. Hoefs, J., Nielsen, H. & Schidlowski, M. Econ. Geol. 63, 975–977 (1968). 25.Ripley, E. M. & Nicol, D. L. Geochim. cosmochim. Acta 45, 839–846 (1981). 26. Postgate, J. R. The Sulphate–reducing Bacteria 2nd edn (Cambridge University Press, 1984). 27. Segerer, A,, Stetter, K. O. & Klink, F. Nature 313, 787–789 (1985).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohmoto, H., Felder, R. Bacterial activity in the warmer, sulphate-bearing, Archaean oceans. Nature 328, 244–246 (1987). https://doi.org/10.1038/328244a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/328244a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing