Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Genetically modified immunocompetent cells in HIV infection

Abstract

Even in the era of highly active antiretroviral therapy (HAART), gene therapy (GT) can remain a promising approach for suppressing HIV infection, especially if complemented with other forms of pharmacological and immunological intervention. A large number of vectors and targets have been studied. Here we discuss the potential of genetically treated, antigen-specific immunocompetent cells for adoptive autologous immunotherapy of HIV infection. Cellular therapies with gene-modified CD8 and CD4 lymphocytes are aimed at reconstituting the antigen-specific repertoires that may be deranged as a consequence of HIV infection. Even if complete eradication of HIV from the reservoirs cannot be achieved, reconstitution of cellular immunity specific for opportunistic pathogens and for HIV itself is a desirable option to control progression of HIV infection and AIDS pathogenesis better.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Hammer SM . A controlled trial of two nucleoside analogues plus indinavir in persons with human immunodeficiency virus infection and CD4 cell counts of 200 per cubic millimeter or less. AIDS Clinical Trial Group 320 Study Team N Engl J Med 1997 337: 725

    Article  CAS  PubMed  Google Scholar 

  2. Gulick RM . Treatment with indinavir, zidovudine, and lamivudine in adults with human immunodeficiency virus infection and prior antiretroviral therapy N Engl J Med 1997 337: 734–739

    Article  CAS  PubMed  Google Scholar 

  3. Finzi D . Latent infection of CD4+ T-cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy Nat Med 1999 5: 512–517

    Article  CAS  PubMed  Google Scholar 

  4. Ramratnam B . The decay of the latent reservoir of replication-competent HIV-1 is inversely correlated with the extent of residual viral replication during prolonged anti-retroviral therapy Nat Med 2000 1: 82–85

    Article  CAS  Google Scholar 

  5. Zhang L . Quantifying residual HIV-1 replication in patients receiving combination antiretroviral therapy N Engl J Med 1999 340: 1605–1613

    Article  CAS  PubMed  Google Scholar 

  6. Ho DD . Toward HIV eradication or remission: the tasks ahead Science 1998 280: 1866–1867

    Article  CAS  PubMed  Google Scholar 

  7. Oxenius A . Early highly active antiretroviral therapy for acute HIV-1 infection preserves immune function of CD8+ and CD4+ T lymphocytes Proc Natl Acad Sci USA 2000 97: 3382–3387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stranford SA . Reduction in CD8+ cell noncytotoxic anti-HIV activity in individuals receiving highly active antiretroviral therapy during primary infection Proc Natl Acad Sci USA 2001 98: 597–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Max B, Sherer R . Management of the adverse effects of antiretroviral therapy and medication adherence Clin Infect Dis 2000 S2: 96–602

    Article  Google Scholar 

  10. Ross J . Viral genetic heterogeneity in HIV-1-infected individuals is associated with increasing use of HAART and higher viraemia AIDS 2000 14: 813–819

    Article  CAS  PubMed  Google Scholar 

  11. Martinez-Picado J . Antiretroviral resistance during successful therapy of HIV type 1 infection Proc Natl Acad Sci USA 2000 97: 10948–10953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Carpenter CC . Antiretroviral therapy in adults: updated recommendations of the International AIDS Society-USA Panel JAMA 2000 283: 381–390

    Article  CAS  PubMed  Google Scholar 

  13. Hirsch MS . Antiretroviral drug resistance testing in adult HIV-1 infection: recommendations of an International AIDS Society-USA Panel JAMA 2000 283: 2417–2426

    Article  CAS  PubMed  Google Scholar 

  14. Morgan R . Genetic strategies to inhibit HIV Mol Med Today 1999 5: 454–458

    Article  CAS  PubMed  Google Scholar 

  15. Amado RG, Mitsuyasu RT, Zack JA . Gene therapy for the treatment of AIDS: animal models and human clinical experience Front Biosci 1999 4: 468–475

    Google Scholar 

  16. Palù G, Parolin C, Takeuchi Y, Pizzato M . Progress with retroviral gene vectors Rev Med Virol 2000 10: 185–202

    Article  PubMed  Google Scholar 

  17. Rosenzweig M, Marks DF, Hempel D, Johnson RP . In vitro T lymphopoiesis: a model system for stem cell gene therapy for AIDS J Med Primatol 1996 25: 192–200

    Article  CAS  PubMed  Google Scholar 

  18. Chinen J . Protection of primary human T cells from HIV infection by Trev: a transdominant fusion gene Hum Gene Ther 1997 8: 861–868

    Article  CAS  PubMed  Google Scholar 

  19. Levine BL . Antiviral effect and ex vivo CD4+ T cell proliferation in HIV-positive patients as a result of CD28 costimulation Science 1996 272: 1939–1943

    Article  CAS  PubMed  Google Scholar 

  20. Jorgensen JL, Reay PA, Ehrich EW, Davis MM . Molecular components of T-cell recognition Annu Rev Immunol 1992 10: 835–873

    Article  CAS  PubMed  Google Scholar 

  21. Manca F, Habeshaw JA, Dalgleish AG . HIV envelope glycoprotein, antigen specific T-cell response and soluble CD4 Lancet 1990 335: 811–815

    Article  CAS  PubMed  Google Scholar 

  22. Schwartz RH . T-lymphocyte recognition of antigen in association with gene products of the major histocompatibility complex Annu Rev Immunol 1985 3: 237–261

    Article  CAS  PubMed  Google Scholar 

  23. Rosenzweig M . Transduction of CD34+ hematopoietic progenitor cells with an antitat gene protects T-cell and macrophage progeny from AIDS virus infection J Virol 1997 71: 2740–2746

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Corbeau P, Kraus G, Wong-Staal F . Transduction of human macrophages using a stable HIV-1/HIV-2-derived gene delivery system Gene Therapy 1998 5: 99–104

    Article  CAS  PubMed  Google Scholar 

  25. Shen H . Intrinsic human immunodeficiency virus type 1 resistance of hematopoietic stem cells despite coreceptor expression J Virol 1999 73: 728–737

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kearns K . Suitability of bone marrow from HIV-1-infected donors for retrovirus-mediated gene transfer Hum Gene Ther 1997 8: 301–311

    Article  CAS  PubMed  Google Scholar 

  27. Law P . Mobilization of peripheral blood progenitor cells for human immunodeficiency virus-infected individuals Exp Hematol 1999 27: 147–154

    Article  CAS  PubMed  Google Scholar 

  28. Rosenzweig M . Intracellular immunization of rhesus CD34+ hematopoietic cells with a hairpin ribozyme protects T cells and macrophages from simian immunodeficiency virus infection Blood 1997 90: 4822–4831

    CAS  PubMed  Google Scholar 

  29. Bonyhadi ML . RevM10-expressing T cells derived in vivo from transduced human hematopoietic stem-progenitor cells inhibit human immunodeficiency virus replication J Virol 1997 71: 4707–4716

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Davis MM, Bjorkman PJ . T cell antigen receptor genes and T-cell recognition Nature 1988 334: 395–402

    Article  CAS  PubMed  Google Scholar 

  31. Freedman AR . Generation of human T lymphocytes from bone marrow CD34+ cells in vitro Nat Med 1996 2: 46–51

    Article  CAS  PubMed  Google Scholar 

  32. Lucas GM . Mending a broken HAART. A report from the 2nd International Workshop on Salvage Therapy The Hopkins HIV Report 1999 11: 1–5

    CAS  PubMed  Google Scholar 

  33. Durant J . Drug-resistance genotyping in HIV-1 therapy: the VIRADAPT randomised controlled trial Lancet 1999 353: 2195–2199

    Article  CAS  PubMed  Google Scholar 

  34. Rodriguez-Rosado R, Briones C, Soriano V . Introduction of HIV-drug resistance testing in clinical practice AIDS 1999 13: 1007–1014

    Article  CAS  PubMed  Google Scholar 

  35. Sarver N . Ribozymes as potential anti-HIV-1 therapeutic agents Science 1990 247: 1222–1225

    Article  CAS  PubMed  Google Scholar 

  36. Mavilio F . Peripheral blood lymphocytes as target cells of retroviral vector-mediated gene transfer Blood 1994 83: 1988–1997

    CAS  PubMed  Google Scholar 

  37. Fehse B . Selective immunoaffinity-based enrichment of CD34+ cells transduced with retroviral vectors containing an intracytoplasmatically truncated version of the human low-affinity nerve growth factor receptor (deltaLNGFR) gene Hum Gene Ther 1997 8: 1815–1824

    Article  CAS  PubMed  Google Scholar 

  38. Ranga U . Enhanced T cell engraftment after retroviral delivery of an antiviral gene in HIV-infected individuals Proc Natl Acad Sci USA 1998 95: 1201–1206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wong-Staal F, Poeschla EM, Looney DJ . A controlled, phase 1 clinical trial to evaluate the safety and effects in HIV-1 infected humans of autologous lymphocytes transduced with a ribozyme that cleaves HIV-1 RNA Hum Gene Ther 1998 9: 2407–2425

    Article  CAS  PubMed  Google Scholar 

  40. Indraccolo S . Pseudotyping of Moloney leukemia virus-based retroviral vectors with simian immunodeficiency virus envelope leads to targeted infection of human CD4+ lymphoid cells Gene Therapy 1998 5: 209–217

    Article  CAS  PubMed  Google Scholar 

  41. Stitz J . MLV-derived retroviral vectors selective for CD4-expressing cells and resistant to neutralization by sera from HIV-infected patients Virology 2000 267: 229–236

    Article  CAS  PubMed  Google Scholar 

  42. Heeney JL . AIDS: a disease of impaired Th-cell renewal? Immunol Today 1995 16: 515–520

    Article  CAS  PubMed  Google Scholar 

  43. Rowland-Jones S . HIV infection: where have all the T cells gone? Lancet 1999 354: 5–7

    Article  CAS  PubMed  Google Scholar 

  44. Zack JA . HIV-1 entry into quiescent primary lymphocytes: molecular analysis reveals a labile, latent viral structure Cell 1990 61: 213–222

    Article  CAS  PubMed  Google Scholar 

  45. Staprans SI . Activation of virus replication after vaccination of HIV-1-infected individuals J Exp Med 1995 182: 1727–1737

    Article  CAS  PubMed  Google Scholar 

  46. Willard-Gallo KE, Furtado M, Burny A, Wolinsky SM . Down-modulation of TCR/CD3 surface complex after HIV-1 infection is associated with differential expression of the viral regulatory genes Eur J Immunol 2001 31: 969–979

    Article  CAS  PubMed  Google Scholar 

  47. Zinkernagel RM, Hengartner H . T-cell-mediated immunopathology versus direct cytolysis by virus: implications for HIV and AIDS Immunol Today 1994 15: 262–268

    Article  CAS  PubMed  Google Scholar 

  48. Brooks DG . Generation of HIV latency during thymopoiesis Nat Med 2001 7: 459–464

    Article  CAS  PubMed  Google Scholar 

  49. Saag MS . Clinical spectrum of human immunodeficiency virus diseases De Vita VT, Hellman S, Rosenberg SA (eds); AIDS: Biology, Diagnosis, Treatment and Prevention Lippincott-Raven 1997 203–215

  50. Kaufmann SH . Immunity to intracellular bacteria Annu Rev Immunol 1993 11: 129–163

    Article  CAS  PubMed  Google Scholar 

  51. Mencacci A . Endogenous interleukin 4 is required for development of protective CD4+ T helper type 1 cell responses to Candida albicans J Exp Med 1998 187: 307–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Theus SA, Andrews RP, Steele P, Walzer PD . Adoptive transfer of lymphocytes sensitized to the major surface glycoprotein of Pneumocystis carinii confers protection in the rat J Clin Invest 1995 95: 2587–2593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bour H . Differential requirement for CD4 help in the development of an antigen-specific CD8+ T cell response depending on the route of immunization J Immunol 1998 160: 5522–5529

    CAS  PubMed  Google Scholar 

  54. Matloubian M, Concepcion RJ, Ahmed R . T cells are required to sustain CD8+ cytotoxic T-cell responses during chronic viral infection J Virol 1994 68: 8056–8063

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Rosenberg ES . Vigorous HIV-1-specific CD4+ T cell responses associated with control of viremia Science 1997 278: 1447–1450

    Article  CAS  PubMed  Google Scholar 

  56. Haynes BF . Immune responses to human immunodeficiency virus infection De Vita VT, Hellman S, Rosenberg SA (eds); AIDS. Biology, Diagnosis, Treatment and Prevention Lippincott-Raven 1997 89–99

  57. Borrow P . Virus-specific CD8 cytotoxic T lymphocyte activity associated with control of viremia in primary human immunodeficiency virus type 1 infection J Virol 1994 68: 6103–6110

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Musey L . Cytotoxic T-cell responses, viral load, and disease progression in early human immundeficiency virus type 1 infection N Engl J Med 1997 337: 1267–1274

    Article  CAS  PubMed  Google Scholar 

  59. Riddell SR, Greenberg PD . Principles for adoptive T cell therapy of human viral diseases Annu Rev Immunol 1995 13: 545–586

    Article  CAS  PubMed  Google Scholar 

  60. Heslop HE . Long-term restoration of immunity against Epstein–Barr virus infection by adoptive transfer of gene-modified virus-specific T lymphocytes Nat Med 1996 2: 551–555

    Article  CAS  PubMed  Google Scholar 

  61. Brodie SJ . In vivo migration and function of transferred HIV-1-specific cytotoxic T cells Nat Med 1999 5: 34–41

    Article  CAS  PubMed  Google Scholar 

  62. Connors M . HIV infection induces changes in CD4+ T-cell phenotype and depletions within the CD4+ T-cell repertoire that are not immediately restored by antiviral or immune-based therapies Nat Med 1997 3: 533–540

    Article  CAS  PubMed  Google Scholar 

  63. Martinon F . Persistent alterations in T-cell repertoire, cytokine and chemokine receptor gene expression after 1 year of highly active antiretroviral therapy AIDS 1999 13: 185–194

    Article  CAS  PubMed  Google Scholar 

  64. Gorochov G . Perturbation of CD4 and CD8 T cell repertoires during progression to AIDS and regulation of CD4 repertoire during antiretroviral therapy Nat Med 1998 4: 215–220

    Article  CAS  PubMed  Google Scholar 

  65. Walker RE . Peripheral expansion of pre-existing mature T cells is an important means of CD4+ T-cell regeneration in HIV-infected adults Nat Med 1998 4: 852–856

    Article  CAS  PubMed  Google Scholar 

  66. Ratto S . Establishment and characterization of human immunodeficiency virus type 1 (HIV-1) envelope-specific CD4+ T lymphocyte lines from HIV-1 seropositive patients J Infect Dis 1995 171: 1420–1430

    Article  CAS  PubMed  Google Scholar 

  67. Kunkl A . Recognition of antigenic clusters of Candida albicans by T lymphocytes from human immunodeficiency virus-infected persons J Infect Dis 1998 178: 488–496

    Article  CAS  PubMed  Google Scholar 

  68. Wilson CC . Ex vivo expansion of CD4 lymphocytes from human immunodeficiency virus type 1-infected persons in the presence of combination antiretroviral agents J Infect Dis 1995 172: 88–96

    Article  CAS  PubMed  Google Scholar 

  69. Biasolo MA . A new antisense tRNA construct for the genetic treatment of human immunodeficiency virus type 1 infection J Virol 1996 70: 2154–2161

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Manca F . Anti-HIV genetic treatment of antigen-specific human CD4 lymphocytes for adoptive immunotherapy of opportunistic infections in AIDS Gene Therapy 1997 4: 1216–1224

    Article  CAS  PubMed  Google Scholar 

  71. Manca F . Rational reconstitution of the immune repertoire in AIDS with autologous, antigen-specific, in vitro-expanded CD4 lymphocytes Immunol Lett 1999 66: 117–120

    Article  CAS  PubMed  Google Scholar 

  72. Kim JH . Consequences of stable transduction and antigen-inducible expression of the human interleukin-7 gene on tetanus-toxoid-specific T cells Hum Gene Ther 1994 5: 1457–1466

    Article  CAS  PubMed  Google Scholar 

  73. Zhou P . Human CD4+ cells transfected with IL-16 cDNA are resistant to HIV-1 infection: inhibition of mRNA expression Nat Med 1997 3: 659–664

    Article  CAS  PubMed  Google Scholar 

  74. Yang AG . Phenotypic knockout of HIV type 1 chemokine coreceptor CCR-5 by intrakines as potential therapeutic approach for HIV-1 infection Proc Natl Acad Sci USA 1997 94: 11567–11572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kovacs JA . Interleukin-2 induced immune effects in human immunodeficiency virus-infected patients receiving intermittent interleukin-2 immunotherapy Eur J Immunol 2001 31: 1351–1360

    Article  CAS  PubMed  Google Scholar 

  76. Gervaix A . Gene therapy targeting peripheral blood CD34+ hematopoietic stem cells of HIV-infected individuals Hum Gene Ther 1997 8: 2229–2238

    Article  CAS  PubMed  Google Scholar 

  77. Davis BR . Targeted transduction of CD34+ cells by transdominant negative Rev-expressing retrovirus yields partial anti-HIV protection of progeny macrophages Hum Gene Ther 1998 9: 1197–1207

    Article  CAS  PubMed  Google Scholar 

  78. Tuting T, Zitvogel L, Nishioka Y . Genetic engineering of dendritic cells Lotze MT, Thomson AW (eds); Dendritic Cells: Biology and Clinical Applications Academic Press 1999 607–616

  79. Lieberman J . Safety of autologous, ex vivo-expanded human immunodeficiency virus (HIV)-specific cytotoxic T-lymphocyte infusion in HIV-infected patients Blood 1997 90: 2196–2206

    CAS  PubMed  Google Scholar 

  80. Tan R . Rapid death of adoptively transferred T cells in acquired immunodeficiency syndrome Blood 1999 93: 1506–1510

    CAS  PubMed  Google Scholar 

  81. Koenig S . Transfer of HIV-1 specific cytotoxic T lymphocytes to an AIDS patient leads to selection for mutant HIV variants and subsequent disease progression Nat Med 1995 1: 330–336

    Article  CAS  PubMed  Google Scholar 

  82. Riddell SR . T-cell mediated rejection of gene-modified HIV-specific cytotoxic T lymphocytes in HIV-infected patients Nat Med 1996 2: 216–223

    Article  CAS  PubMed  Google Scholar 

  83. McMichael AJ, Phillips RE . Escape of human immunodeficiency virus from immune control Nat Med 1997 15: 271–296

    CAS  Google Scholar 

  84. Kostense S . High viral burden in the presence of major HIV-specific CD8(+) T cell expansions: evidence for impaired CTL effector function Eur J Immunol 2001 31: 677–686

    Article  CAS  PubMed  Google Scholar 

  85. Roberts MR . Targeting of human immunodeficiency virus-infected cells by CD8+ T lymphocytes armed with universal T-cell receptors Blood 1994 84: 2878–2889

    CAS  PubMed  Google Scholar 

  86. Yang OO . Lysis of HIV-1 infected cells and inhibition of viral replication by universal receptor T cells Proc Natl Acad Sci USA 1997 94: 11478–11483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Romeo C, Seed B . Cellular immunity to HIV activated by CD4 fused to T cell or Fc receptor polypeptides Cell 1991 64: 1037–1046

    Article  CAS  PubMed  Google Scholar 

  88. Nelson BH, Lord JD, Greenberg PD . Cytoplasmic domains of the interleukin-2 receptor beta and gamma chains mediate the signal for T-cell proliferation Nature 1994 369: 333–336

    Article  CAS  PubMed  Google Scholar 

  89. Engelhard VH . Structure of peptides associated with class I and class II MHC molecules Annu Rev Immunol 1994 12: 181–207

    Article  CAS  PubMed  Google Scholar 

  90. Matsuoka H, Miyake K, Shimada T . Improved methods of HIV vector mediated gene transfer Annu Rev Immunol 1998 67: 267–273

    CAS  Google Scholar 

  91. Chen SY, Khouri Y, Bagley J, Marasco WA . Combined intra- and extracellular immunization against human immunodeficiency virus type 1 infection with a human anti-gp120 antibody Proc Natl Acad Sci USA 1994 91: 5932–5936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Rondon IJ, Marasco WA . Intracellular antibodies (intrabodies) for gene therapy of infectious diseases Annu Rev Microbiol 1997 51: 257–283

    Article  CAS  PubMed  Google Scholar 

  93. Poznansky MC . Inhibition of human immunodeficiency virus replication and growth advantage of CD4+ T cells from HIV-infected individuals that express intracellular antibodies against HIV-1 gp120 or Tat Hum Gene Ther 1998 9: 487–496

    Article  CAS  PubMed  Google Scholar 

  94. Huygen K . Immunogenicity and protective efficacy of a tuberculosis DNA vaccine Nat Med 1996 2: 893–898

    Article  CAS  PubMed  Google Scholar 

  95. Manca F . Human CD4+ T cells can discriminate the molecular and structural context of T epitopes of HIV gp120 and HIV p66 J AIDS 1995 9: 227–237

    CAS  Google Scholar 

  96. Li Pira G . Repertoire breadth of human CD4+ T cells specific for HIV gp120 and p66 (primary antigens) or for PPD and tetanus toxoid (secondary antigens) Hum Immunol 1998 59: 137–148

    Article  CAS  PubMed  Google Scholar 

  97. Manca F . Recognition of human T-leukemia virus (HTLV-1) envelope by human CD4+ T-cell lines from HTLV-I seronegative individuals: specificity and clonal heterogeneity Blood 1995 85: 1547–1554

    CAS  PubMed  Google Scholar 

  98. Pannetier C, Even J, Kourilsky P . T-cell repertoire diversity and clonal expansions in normal and clinical samples Immunol Today 1995 16: 176–181

    Article  CAS  PubMed  Google Scholar 

  99. Walter EA . Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor N Engl J Med 1995 333: 1038–1044

    Article  CAS  PubMed  Google Scholar 

  100. Ho M . A phase 1 study of adoptive transfer of autologous CD8+ T lymphocytes in patients with acquired immunodeficiency syndrome (AIDS)-related complex or AIDS Blood 1993 81: 2093–2101

    CAS  PubMed  Google Scholar 

  101. Hellerstein M . Directly measured kinetics of circulating T lymphocytes in normal and in HIV-1 infected humans Nat Med 1999 5: 83–89

    Article  CAS  PubMed  Google Scholar 

  102. Waldrop SL . Determination of antigen-specific memory/effector CD4+ T cell frequencies by flow-cytometry: evidence for a novel, antigen-specific homeostatic mechanism in HIV-associated immunodeficiency J Clin Invest 1997 99: 1739–1750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ogg GS . Quantitation of HIV-1-specific cytotoxic T lymphocytes and plasma load of viral RNA Science 1998 279: 2103–2106

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants to G Palù (National Health Institute, Rome, AIDS Project N.40B.72, Fondazione Cassa di Risparmio di Padova e Rovigo, MURST, CNR Target Project on Biotechnology), to C Parolin (National Health Institute, Rome, AIDS Project N.30C.57) and to F Manca (National Health Institute, Rome, AIDS Project N.40A.0.64 and Tuberculois Project 99/D/T; National Research Council, Rome – Biotechnology Project 1999; European Union Contracts – CA BHH4-CT9720, FAIR CT97-3046, QLRT-1999-31041, QLK2-1999-01040, QLK2-CT1999-01321). The authors thank M Guida for artwork.

Author information

Authors and Affiliations

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palù, G., Pira, G., Gennari, F. et al. Genetically modified immunocompetent cells in HIV infection. Gene Ther 8, 1593–1600 (2001). https://doi.org/10.1038/sj.gt.3301569

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/sj.gt.3301569

Keywords

This article is cited by

Search

Quick links