Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Apical barriers to airway epithelial cell gene transfer with amphotropic retroviral vectors

Abstract

Gene transfer to airway epithelia with amphotropic pseudotyped retroviral vectors is inefficient following apical vector application. To better understand this inefficiency, we localized the expression of Pit2, the amphotropic receptor, in polarized human airway epithelia. Pit2 was expressed on both the apical and basolateral surfaces of the cells, suggesting that factors other than receptor abundance may limit apical gene transfer efficiency. Binding studies performed with radiolabeled amphotropic MuLV suggested that the apically applied virus binds to Pit2. Hypothetical barriers to retroviral gene transfer include the apical glycocalyx and other secreted products of epithelia. In this study, we demonstrated that sialic acid, keratan sulfate and collagen type V are present on the apical surface of well-differentiated human airway epithelia. While enzyme treatment reduced the abundance of these components, the treatment also decreased the transepithelial resistance to ~35% of the controls, suggesting that the epithelial integrity was impaired. To attain an airway epithelial culture with a modified apical surface and intact epithelial integrity, we utilized 100 mM 2-deoxy-D-glucose, a glycosylation inhibitor, to prevent the glycocalyx from reforming following enzyme treatment. This approach allowed the resistance, but not the apical glycocalyx to recover. Despite this physical modification of the cell surface, the amphotropic retroviral vector failed to transduce airway epithelia following apical application. These results suggest that factors other than apical receptor abundance and the glycocalyx inhibit amphotropic retroviral gene transfer in human airway epithelia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Johnson LG et al. Efficiency of gene transfer for restoration of normal airway epithelial function in cystic fibrosis Nature Genet 1992 2: 21–25

    Article  CAS  PubMed  Google Scholar 

  2. Wang G, Sinn PL, McCray PB Jr . Development of retroviral vectors for gene transfer to airway epithelia Curr Opin Mol Ther 2000 2: 497–506

    CAS  PubMed  Google Scholar 

  3. Flotte TR et al. Stable in vivo expression of the cystic fibrosis transmembrane conductance regulator with an adeno-associated virus vector Proc Natl Acad Sci USA 1993 90: 10613–10617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pickles RJ et al. Retargeting the coxsackievirus and adenovirus receptor to the apical surface of polarized epithelial cells reveals the glycocalyx as a barrier to adenovirus-mediated gene transfer J Virol 2000 74: 6050–6057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Walters RW et al. Basolateral localization of fiber receptors limits adenovirus infection of airway epithelia J Biol Chem 1999 274: 10219–10226

    Article  CAS  PubMed  Google Scholar 

  6. Duan D, Yue Y, McCray PB Jr, Engelhardt JF . Polarity influences the efficiency of recombinant adeno-associated virus infection in differentiated airway epithelia Hum Gene Ther 1998 9: 2761–2776

    Article  CAS  PubMed  Google Scholar 

  7. Bals R et al. Transduction of well-differentiated airway epithelium by recombinant adeno-associated virus is limited by vector entry J Virol 1999 73: 6085–6088

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Zabner J et al. Adeno-associated virus type 5 (AAV5) but not AAV2 binds to the apical surfaces of airway epithelia and facilitates gene transfer J Virol 2000 74: 3852–3858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang G et al. Influence of cell polarity on retrovirus-mediated gene transfer to differentiated human airway epithelia J Virol 1998 72: 9818–9826

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang G et al. Keratinocyte growth factor induced epithelial proliferation facilitates retroviral-mediated gene transfer to pulmonary epithelia in vivo J Gene Med 1999 1: 22–30

    Article  CAS  PubMed  Google Scholar 

  11. Wang G et al. Feline immunodeficiency virus vectors persistently transduce nondividing airway epithelia and correct the cystic fibrosis defect J Clin Invest 1999 104: R49–R56

    Article  Google Scholar 

  12. Miller DG, Edwards RH, Miller AD . Cloning of the cellular receptor for amphotropic murine retroviruses reveals homology to that for gibbon ape leukemia virus Proc Natl Acad Sci USA 1994 91: 78–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Battini J, Rasko JEJ, Miller AD . A human cell-surface receptor for xenotropic and polytropic murine leukemia viruses: possible role in G protein-coupled signal transduction Proc Natl Acad Sci USA 1999 96: 1385–1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tailor CS et al. Cloning and characterization of a cell surface receptor for xenotropic and polytropic murine leukemia viruses Proc Natl Acad Sci USA 1999 96: 927–932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang YL et al. Receptors for polytropic and xenotropic mouse leukaemia viruses encoded by a single gene at Rmc1 Nat Genet 1999 21: 216–219

    Article  PubMed  Google Scholar 

  16. Schlegel R, Tralka TS, Willingham MC, Pastan I . Inhibition of VSV binding and infectivity by phosphatidylserine: is phosphatidylserine a VSV-binding site? Cell 1983 32: 639–646

    Article  CAS  PubMed  Google Scholar 

  17. Wang G et al. Increasing epithelial junction permeability enhances gene transfer to airway epithelia in vivo Am J Respir Cell Mol Biol 2000 22: 129–138

    Article  PubMed  Google Scholar 

  18. Kavanaugh MP et al. Cell-surface receptors for gibbon ape leukemia virus and amphotropic murine retrovirus are inducible sodium-dependent phosphate symporters Proc Natl Acad Sci USA 1994 91: 7071–7075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rodrigues P, Heard JM . Modulation of phosphate uptake and amphotropic murine leukemia virus entry by posttranslational modifications of PIT-2 J Virol 1999 73: 3789–3799

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Afzelius BA . Glycocalyx and glycocalyceal bodies in the respiratory epithelium of nose and bronchi Ultrastruct Pathol 1984 7: 1–8

    Article  CAS  PubMed  Google Scholar 

  21. Spicer SS, Mochizuki I, Setser ME, Martinez JR . Complex carbohydrates of rat tracheobronchial surface epithelium visualized ultrastructurally Am J Anat 1980 158: 93–109

    Article  CAS  PubMed  Google Scholar 

  22. Lopez-Vidriero MT . Mucus as a natural barrier Respiration 1989 55: 28–32

    Article  PubMed  Google Scholar 

  23. McDowell EM et al. The respiratory epithelium. I. Human bronchus J Natl Cancer Inst 1978 61: 539–549

    CAS  PubMed  Google Scholar 

  24. Kelm S, Schauer R . Sialic acids in molecular and cellular interactions Int Rev Cytol 1997 175: 137–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Roman J . Extracellular matrix and lung inflammation Immunol Res 1996 15: 163–178

    Article  CAS  PubMed  Google Scholar 

  26. Madri JA, Furthmayr H . Isolation and tissue localization of type AB2 collagen from normal lung parenchyma Am J Pathol 1979 94: 323–331

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Aumailley M, Gayraud B . Structure and biological activity of the extracellular matrix J Mol Med 1998 76: 253–265

    Article  CAS  PubMed  Google Scholar 

  28. Coyne CB, Kelly MM, Boucher RC, Johnson LG . Enhanced epithelial gene transfer by modulation of tight junctions with sodium caprate Am J Respir Cell Mol Biol 2000 23: 602–609

    Article  CAS  PubMed  Google Scholar 

  29. Datema R, Schwarz RT . Interference with glycosylation of glycoproteins. Inhibition of formation of lipid-linked oligosaccharides in vivo Biochem J 1979 184: 113–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gendler SJ, Spicer AP . Epithelial mucin genes Annu Rev Physiol 1995 57: 607–634

    Article  CAS  PubMed  Google Scholar 

  31. Alberts B . Cell junctions, cell adhesion, and the extracellular matrix Alberts B (eds); Molecular Biology of the Cell Garland Publishing 1994 pp 949–1009

  32. Dunsmore SE, Rannels DE . Extracellular matrix biology in the lung Am J Physiol 1996 270: L3–27

    CAS  PubMed  Google Scholar 

  33. Arcasoy SM et al. MUC1 and other sialoglycoconjugates inhibit adenovirus-mediated gene transfer to epithelial cells Am J Respir Cell Mol Biol 1997 17: 422–435

    Article  CAS  PubMed  Google Scholar 

  34. Walters RW et al. Apical localization of the coxsackie-adenovirus receptor by glycosyl-phosphatidylinositol modification is sufficient for adenovirus-mediated gene transfer through the apical surface of human airway epithelia J Virol 2001 75: 7703–7711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Goff SP . Intracellular trafficking of retroviral genomes during the early phase of infection: viral exploitation of cellular pathways J Gene Med 2001 3: 517–528

    Article  CAS  PubMed  Google Scholar 

  36. Wang G et al. Human coronavirus 229E infects polarized airway epithelia from the apical surface J Virol 2000 74: 9234–9239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Slepushkin VA et al. Infection of human airway epithelia with H1N1, H2N2 and H3N2 influenza A virus strains Mol Ther 2001 3: 395–402

    Article  CAS  PubMed  Google Scholar 

  38. Yamaya M, Finkbeiner WE, Chun SY, Widdicombe JH . Differentiated structure and function of cultures from human tracheal epithelium Am J Physiol 1992 262: L713–L724

    CAS  PubMed  Google Scholar 

  39. Zabner J, Zeiher BG, Friedman E, Welsh MJ . Adenovirus-mediated gene transfer to ciliated airway epithelia requires prolonged incubation time J Virol 1996 70: 6994–7003

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Anderson RD et al. A simple method for the rapid generation of recombinant adenovirus vectors Gene Therapy 2000 7: 1034–1038

    Article  CAS  PubMed  Google Scholar 

  41. Sheridan PL et al. Generation of retroviral packaging and producer cell lines for large-scale vector production and clinical application: improved safety and high titer Mol Ther 2000 2: 262–275

    Article  CAS  PubMed  Google Scholar 

  42. Cosset F-L et al. High-titer packaging cells producing recombinant retroviruses resistant to human serum J Virol 1995 69: 7430–7436

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Kitten O, Cosset F-L, Ferry N . Highly efficient retrovirus-mediated gene transfer into rat hepatocytes in vivo Hum Gene Ther 1997 8: 1491–1494

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the technical expertise of Phil Karp and Pary Weber of the University of Iowa Cell Culture Core in preparing the human airway epithelial cultures. We thank Dr Yubin Kang for his helpful discussions. This work was supported in part by grants from the Cystic Fibrosis Foundation (GW99G0) and NIH (R01 HL61460 and P50 HL51670, BLD and PBM). We acknowledge the support of the Morphology Core and Gene Transfer Vector Core, partially supported by the Cystic Fibrosis Foundation, NHLBI (NIH P50 HL51670), and the Center for Gene Therapy for Cystic Fibrosis and other Genetic Diseases (NIH P30 DK54759).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, G., Williams, G., Xia, H. et al. Apical barriers to airway epithelial cell gene transfer with amphotropic retroviral vectors. Gene Ther 9, 922–931 (2002). https://doi.org/10.1038/sj.gt.3301714

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/sj.gt.3301714

Keywords

This article is cited by

Search

Quick links