Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Selective gene expression using a DF3/MUC1 promoter in a human esophageal adenocarcinoma model

Abstract

The efficacy of replication-deficient adenoviral vectors in gene therapy is confined to the number of tumor cells the vector infects. To focus and enhance the therapeutic efficacy, we employed a conditionally replication-competent adenoviral vector with a tissue-specific promoter, DF3/MUC1, in a human esophageal adenocarcinoma model. Our results demonstrate that Ad.DF3.E1A.CMV.TNF (Ad.DF3.TNF) specifically replicates in Bic-1 (DF3-producing cells) and mediates an enhanced biologic effect due to increased TNF-α in the same DF3-producing cells. We also show that the increased TNF-α interacts with ionizing radiation to produce greater tumor regression and a greater delay in tumor regrowth in Bic-1 (DF3-producing cells) compared to Seg-1 (DF3 non-producers). Tumor cell targeting using conditionally replication-competent adenoviral vectors with tumor-specific promoters to drive viral replication and deliver TNF-α provides a novel approach to enhancing tumor radiosensitivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Zhang WW. Development and application of adenoviral vectors for gene therapy of cancer. Cancer Gene Ther 1999; 6: 113–138.

    Article  CAS  PubMed  Google Scholar 

  2. Danthinne X, Imperiale MJ. Production of first generation adenovirus vectors: a review. Gene Ther 2000;7: 1707–1714.

    Article  CAS  PubMed  Google Scholar 

  3. Walther W, Stein U. Therapeutic genes for cancer gene therapy. Mol Biotechnol 1999; 13: 21–28.

    Article  CAS  PubMed  Google Scholar 

  4. Springer CJ, Niculescu-Duvaz I. Prodrug-activating systems in suicide gene therapy. J Clin Invest 2000; 105: 1161–1167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sun WH et al. In vivo cytokine gene transfer by gene gun reduces tumor growth in mice. Proc Natl Acad Sci USA 1995; 92: 2889–2893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mauceri HJ et al. Radiation-inducible gene therapy. C R Acad Sci III 1999; 322: 225–228.

    Article  CAS  PubMed  Google Scholar 

  7. Heise C, Kirn DH. Replication-selective adenoviruses as oncolytic agents. J Clin Invest 2000; 105: 847–851.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cao G et al. Analysis of the human carcinoembryonic antigen promoter core region in colorectal carcinoma-selective cytosine deaminase gene therapy. Cancer Gene Ther 1999; 6: 572–580.

    Article  CAS  PubMed  Google Scholar 

  9. Rodriguez R et al. Prostate attenuated replication competent adenovirus (ARCA) CN706: a selectivecytotoxic for prostate-specific antigen-positive prostate cancer cells. Cancer Res 1997; 57, 2559–2563.

    CAS  PubMed  Google Scholar 

  10. Hallenbeck PL et al. A novel tumor-specific replication-restricted adenoviral vector for gene therapy of hepatocellular carcinoma. Hum Gene Ther 1999; 10: 1721–1733.

    Article  CAS  PubMed  Google Scholar 

  11. Hallahan DE et al. Protein kinase C mediates x-ray inducibility of nuclear signal transducers EGR1 and JUN. Proc Natl Acad Sci USA 1991; 88: 2156–2160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hallahan DE et al. Radiation signaling mediated by Jun activation following dissociation from a cell type-specific repressor. J Biol Chem 1993; 268: 4903–4907.

    CAS  PubMed  Google Scholar 

  13. Sherman ML et al. Ionizing radiation regulates expression of the c-jun protooncogene. Proc Natl Acad Sci USA 1990; 87: 5663–5666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sherman ML et al. Regulation of tumor necrosis factor gene expression by ionizing radiation in human myeloid leukemia cells and peripheral blood monocytes. J Clin Invest 1991; 87: 1794–1797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Datta R et al. Ionizing radiation activates transcription of the EGR1 gene via CArG elements. Proc Natl Acad Sci USA 1992; 89, 10 149–10 153.

    Article  CAS  Google Scholar 

  16. Datta R et al. Involvement of reactive oxygen intermediates in the induction of c-jun gene transcription by ionizing radiation. Biochemistry 1992; 31: 8300–8306.

    Article  CAS  PubMed  Google Scholar 

  17. Datta R et al. Reactive oxygen intermediates target CC(A/T)6GG sequences to mediate activation of the early growth response 1 transcription factor gene by ionizing radiation. Proc Natl Acad Sci USA 1993; 90: 2419–2422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Abe M, Kufe D. Structural analysis of the DF3 human breast carcinoma-associated protein. Cancer Res 1989; 49: 2834–2839.

    CAS  PubMed  Google Scholar 

  19. Burdick MD et al. Oligosaccharides expressed on MUC1 produced by pancreatic and colon tumor cell lines. J Biol Chem 1997; 272: 24198–24202.

    Article  CAS  PubMed  Google Scholar 

  20. Kurihara T, Brough DE, Kovesdi I, Kufe DW. Selectivity of a replication-competent adenovirus for human breast carcinoma cells expressing the MUC1 antigen. J Clin Invest 2000; 106: 763–771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sersa G, Willingham V, Milas L. Anti-tumor effects of tumor necrosis factor alone or combined with radiotherapy. Int J Cancer 1988; 42: 129–134.

    Article  CAS  PubMed  Google Scholar 

  22. Seung LP et al. Genetic radiotherapy overcomes tumor resistance to cytotoxic agents. Cancer Res 1995; 55: 5561–5565.

    CAS  PubMed  Google Scholar 

  23. El-Serag HB, Mason AC, Petersen N, Key CR. Epidemiological differences between adenocarcinoma of the oesophagus and adenocarcinoma of the gastric cardia in the USA. Gut 2002; 50: 368–372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Blot WJ, McLaughlin JK. The changing epidemiology of esophageal cancer. Semin Oncol 1999; 26: 2–8.

    CAS  PubMed  Google Scholar 

  25. Devesa SS, Blot WJ, Fraumeni Jr JF. Changing patterns in the incidence of esophageal and gastric carcinoma in the United States. Cancer 1998; 83: 2049–2053.

    Article  CAS  PubMed  Google Scholar 

  26. Bosset JF et al. Chemoradiotherapy followed by surgery compared with surgery alone in squamous-cell cancer of the esophagus. N Engl J Med 1997; 337: 161–167.

    Article  CAS  PubMed  Google Scholar 

  27. Urba SG et al. Randomized trial of preoperative chemoradiation versus surgery alone in patients with locoregional esophageal carcinoma. J Clin Oncol 2001; 19: 305–303.

    Article  CAS  PubMed  Google Scholar 

  28. Walsh TN et al. A comparison of multimodal therapy and surgery for esophageal adenocarcinoma. N Engl J Med 1996; 335: 462–467.

    Article  CAS  PubMed  Google Scholar 

  29. Posner MC et al. Complete 5-year follow-up of a prospective phase II trial of preoperative chemoradiotherapy for esophageal cancer. Surgery 2001; 130: 620–626discussion 626–628.

    Article  CAS  PubMed  Google Scholar 

  30. Chinyama CN et al. Expression of MUC1 and MUC2 mucin gene products in Barrett's metaplasia, dysplasia and adenocarcinoma: an immunopathological study with clinical correlation. Histopathology 1999; 35: 517–524.

    Article  CAS  PubMed  Google Scholar 

  31. Das AK, Walther PJ, Buckley NJ, Poulton SH. Recombinant human tumor necrosis factor alone and with chemotherapeutic agents. Effect on nude mouse-supported human bladder cancer heterografts. Arch Surg 1989; 124: 107–110.

    Article  CAS  PubMed  Google Scholar 

  32. Hallahan DE, Beckett MA, Kufe D, Weichselbaum RR. The interaction between recombinant human tumor necrosis factor and radiation in 13 human tumor cell lines. Int J Radiat Oncol Biol Phys 1990; 19: 69–74.

    Article  CAS  PubMed  Google Scholar 

  33. Mauceri HJ et al. Tumor necrosis factor alpha (TNF-alpha) gene therapy targeted by ionizing radiation selectively damages tumor vasculature. Cancer Res 1996; 56: 4311–4514.

    CAS  PubMed  Google Scholar 

  34. Weichselbaum R et al. Gene therapy targeted by radiation preferentially radiosensitizes tumor cells. Cancer Research 1994; 54: 462–469.

    Google Scholar 

  35. Hallahan DE et al. Spatial and temporal control of gene therapy using ionizing radiation. Nat Med 1995; 1: 786–791.

    Article  CAS  PubMed  Google Scholar 

  36. Staba M-J et al. Adenoviral TNF-a gene therapy and radiation damage tumor vasculature in a human malignant glioma xenograft. Gene Therapy 1998; 5: 293–300.

    Article  CAS  PubMed  Google Scholar 

  37. Chung TD et al. Tumor necrosis factor-alpha-based gene therapy enhances radiation cytotoxicity in human prostate cancer. Cancer Gene Ther 1998; 5: 344–349.

    CAS  PubMed  Google Scholar 

  38. Sugarman BJ et al. Recombinant human tumor necrosis factor-alpha: effects on proliferation of normal and transformed cells in vitro. Science 1985; 230: 943–945.

    Article  CAS  PubMed  Google Scholar 

  39. Asher A et al. Studies on the anti-tumor efficacy of systemically administered recombinant tumor necrosis factor against several murine tumors in vivo. J Immunol 1987; 138: 963–974.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, V., Park, J., Kurihara, T. et al. Selective gene expression using a DF3/MUC1 promoter in a human esophageal adenocarcinoma model. Gene Ther 10, 206–212 (2003). https://doi.org/10.1038/sj.gt.3301867

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/sj.gt.3301867

Keywords

This article is cited by

Search

Quick links