Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Spontaneous transgenesis of human B lymphocytes

Abstract

DNA can cross the cell membrane by natural means, but the functional relevance of this phenomenon has not been fully elucidated. Here, we analyzed spontaneous transgenesis of human B cells using plasmid DNA coding for a functional immunoglobulin (Ig) heavy chain gene under the control of a B-cell-specific promoter. Using polymerase chain reaction (PCR), reverse transcriptase-PCR, and flow cytometry in combination, spontaneous transgenesis was documented in Burkitt's lymphoma cell lines, Epstein–Barr virus-transformed cell lines, and peripheral blood B lymphocytes of the mature naïve phenotype (IgM+/IgD+/CD27). By immunoelectron microscopy, the internalized DNA was seen in the lysosomes/late endosomes and in the cytosol proximal to the nucleus. Importantly, spontaneously transgenic B cells processed and presented to major histocompatibility complex (MHC)-restricted T lymphocytes a peptide expressed in the transgenic product. This is the first demonstration that primary B lymphocytes possess a program for the spontaneous internalization of DNA, which in turn imparts the cell with new immunological functions. As spontaneous transgenesis is obtained using a nonviral vector, does not require prior cell activation, and is not associated with chromosomal integration, the findings reported here open new possibilities for genetic manipulations of mature naïve B lymphocytes for therapy and vaccination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Friedmann T . Progress toward human gene therapy. Science 1989; 244: 1275–1281.

    Article  CAS  Google Scholar 

  2. Gregoriadis G . Genetic vaccines: strategies for optimization. Pharm Res 1998; 15: 661–670.

    Article  CAS  Google Scholar 

  3. Cibelli JB, Lanza RP, West MD, Ezzell C . The first human cloned embryo. Sci Am 2002; 286: 44–51.

    Article  Google Scholar 

  4. Wilmut I et al. Viable offspring derived from fetal and adult mammalian cells. Nature 1997; 385: 810–813.

    Article  CAS  Google Scholar 

  5. Willard HF . Genomics and gene therapy. Artificial chromosomes coming to life. Science 2000; 290: 1308–1309.

    Article  CAS  Google Scholar 

  6. Grimes BR et al. Stable gene expression from a mammalian artificial chromosome. EMBO Rep 2001; 2: 910–914.

    Article  CAS  Google Scholar 

  7. Wu GY et al. Receptor-mediated gene delivery in vivo. Partial correction of genetic albuminemia in Nagase rats. J Biol Chem 1991; 266: 14338–14342.

    CAS  Google Scholar 

  8. Engelhardt JF et al. Direct gene transfer of human CFTR into human bronchial epithelia of xenografts with E1-deleted adenoviruses. Nat Genet 1993; 4: 27–34.

    Article  CAS  Google Scholar 

  9. Luo D, Saltzman WM . Synthetic DNA delivery systems. Nat Biotechnol 2000; 18: 33–37.

    Article  CAS  Google Scholar 

  10. Chan DC, Kim PS . HIV entry and its inhibition. Cell 1998; 93: 681–684.

    Article  CAS  Google Scholar 

  11. Klasse PJ, Bron R, Marsh M . Mechanisms of enveloped virus entry into animal cells. Adv Drug Deliv Rev 1998; 34: 65–91.

    Article  CAS  Google Scholar 

  12. Sauer FG et al. Bacterial pili: molecular mechanisms of pathogenesis. Curr Opin Microbiol 2000; 3: 65–72.

    Article  CAS  Google Scholar 

  13. Hill M . The uptake of deoxyribonucleic acid released from damaged cells in tissue cultures. Exp Cell Res 1967; 45: 533–549.

    Article  CAS  Google Scholar 

  14. Robins AB, Taylor DM . Nuclear uptake of exogenous DNA by mammalian cells in culture. Nature 1968; 217: 1228–1231.

    Article  CAS  Google Scholar 

  15. Ayad SR, Fox M . DNA uptake by a mutant strain of lymphoma cells. Nature 1968; 220: 35–38.

    Article  CAS  Google Scholar 

  16. Wigler M et al. Transfer of purified herpesvirus thymidine kinase gene to cultured mouse cells. Cell 1977; 11: 223–232.

    Article  CAS  Google Scholar 

  17. Brackett BG, Baranska W, Sawicki W, Koprowski H . Uptake of heterologous genome by mammalian spermatozoa and its transfer to ova through fertilization. Proc Natl Acad Sci USA 1971; 68: 353–357.

    Article  CAS  Google Scholar 

  18. Wolff JA et al. Direct gene transfer into mouse muscle in vivo. Science 1990; 247: 1465–1468.

    Article  CAS  Google Scholar 

  19. Tang D, DeVit M, Johnston SA . Genetic immunization is a simple method for eliciting an immune response. Nature 1992; 356: 152–154.

    Article  CAS  Google Scholar 

  20. Ulmer JB et al. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 1993; 259: 1745–1749.

    Article  CAS  Google Scholar 

  21. Dupuis M et al. Distribution of DNA vaccines determines their immunogenicity after intramuscular injection in mice. J Immunol 2000; 165: 2850–2858.

    Article  CAS  Google Scholar 

  22. Sollazzo M, Billetta R, Zanetti M . Expression of an exogenous peptide epitope genetically engineered in the variable domain of an immunoglobulin: implications for antibody and peptide folding. Protein Eng 1990; 4: 215–220.

    Article  CAS  Google Scholar 

  23. Rivoltini L et al. Induction of tumor-reactive CTL from peripheral blood and tumor-infiltrating lymphocytes of melanoma patients by in vitro stimulation with an immunodominant peptide of the human melanoma antigen MART-1. J Immunol 1995; 154: 2257–2265.

    CAS  PubMed  Google Scholar 

  24. Xiong S, Gerloni M, Zanetti M . Engineering vaccines with heterologous B and T cell epitopes using immunoglobulin genes. Nat Biotech 1997; 15: 882–886.

    Article  CAS  Google Scholar 

  25. Beltinger C et al. Binding, uptake, and intracellular trafficking of phosphorothioate-modified oligodeoxynucleotides. J Clin Invest 1995; 95: 1814–1823.

    Article  CAS  Google Scholar 

  26. Sollazzo M et al. Molecular characterization of the VH region of murine autoantibodies from neonatal and adult BALB/c mice. Eur J Immunol 1989; 19: 453–457.

    Article  CAS  Google Scholar 

  27. Klein U, Rajewsky K, Kuppers R . Human immunoglobulin (Ig)M+IgD+ peripheral blood B cells expressing the CD27 cell surface antigen carry somatically mutated variable region genes: CD27 as a general marker for somatically mutated (memory) B cells. J Exp Med 1998; 188: 1679–1689.

    Article  CAS  Google Scholar 

  28. Frazer JK, Capra JD . Immunoglobulins: structure and function. In: Paul WE (ed). Fundamental Immunology 4th edn. Lippincott-Raven Publishers: Philadelphia, 1999, pp 37–74.

    Google Scholar 

  29. Fra AM et al. Quality control of ER synthesized proteins: an exposed thiol group as a three-way switch mediating assembly, retention and degradation. EMBO J 1993; 12: 4755–4761.

    Article  CAS  Google Scholar 

  30. Mancini R et al. Degradation of unassembled soluble Ig subunits by cytosolic proteasomes: evidence that retrotranslocation and degradation are coupled events. FASEB J 2000; 14: 769–778.

    Article  CAS  Google Scholar 

  31. Yewdell JW, Bennink JR . Cell biology of antigen processing and presentation to major histocompatibility complex class I molecule-restricted T lymphocytes. Adv Immunol 1992; 52: 1–123.

    Article  CAS  Google Scholar 

  32. Yakubov LA et al. Mechanism of oligonucleotide uptake by cells: involvement of specific receptors? Proc Natl Acad Sci USA 1989; 86: 6454–6458.

    Article  CAS  Google Scholar 

  33. Loke SL et al. Characterization of oligonucleotide transport into living cells. Proc Natl Acad Sci USA 1989; 86: 3474–3478.

    Article  CAS  Google Scholar 

  34. Budker V et al. Hypothesis: naked plasmid DNA is taken up by cells in vivo by a receptor-mediated process. J Gene Med 2000; 2: 76–88.

    Article  CAS  Google Scholar 

  35. Gasparro FP et al. Cell membrane DNA: a new target for psoralen photoadduct formation. Photochem Photobiol 1990; 52: 315–321.

    Article  CAS  Google Scholar 

  36. Goodarzi G, Watabe M, Watabe K . Binding of oligonucleotides to cell membranes at acidic pH. Biochem Biophys Res Commun 1991; 181: 1343–1351.

    Article  CAS  Google Scholar 

  37. Vlassov VV, Balakireva LA, Yakubov LA . Transport of oligonucleotides across natural and model membranes. Biochim Biophys Acta 1994; 1197: 95–108.

    Article  CAS  Google Scholar 

  38. Benimetskaya L et al. Mac-1 (CD11b/CD18) is an oligodeoxy-nucleotide-binding protein. Nat Med 1997; 3: 414–420.

    Article  CAS  Google Scholar 

  39. Bennett RM, Gabor GT, Merritt MM . DNA binding to human leukocytes. Evidence for a receptor-mediated association, internalization, and degradation of DNA. J Clin Invest 1985; 76: 2182–2190.

    Article  CAS  Google Scholar 

  40. Bennet RM et al. The production and characterization of murine monoclonal antibodies to a DNA receptor on human leukocytes. J Immunol 1988; 140: 2937–2942.

    CAS  PubMed  Google Scholar 

  41. Siess DC et al. A human gene coding for a membrane-associated nucleic acid-binding protein. J Biol Chem 2000; 275: 33655–33662.

    Article  CAS  Google Scholar 

  42. Hemmi H et al. A Toll-like receptor recognizes bacterial DNA. Nature 2000; 408: 740–745.

    Article  CAS  Google Scholar 

  43. Bauer S et al. Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc Natl Acad Sci USA 2001; 98: 9237–9242.

    Article  CAS  Google Scholar 

  44. Ahmad-Nejad P et al. Bacterial CpG-DNA and lipopoly-saccharides activate Toll-like receptors at distinct cellular compartments. Eur J Immunol 2002; 32: 1958–1968.

    Article  CAS  Google Scholar 

  45. Chuang TH et al. Toll-like receptor 9 mediates CpG-DNA signaling. J Leukocyte Biol 2002; 71: 538–544.

    CAS  PubMed  Google Scholar 

  46. Roche PA et al. Cell surface HLA-DR-invariant chain complexes are targeted to endosomes by rapid internalization. Proc Natl Acad Sci USA 1993; 90: 8581–8585.

    Article  CAS  Google Scholar 

  47. Amigorena S, Drake JR, Webster P, Mellman I . Transient accumulation of new class II MHC molecules in a novel endocytic compartment in B lymphocytes. Nature 1994; 369: 113–120.

    Article  CAS  Google Scholar 

  48. Thery C et al. MHC class II transport from lysosomal compartments to the cell surface is determined by stable peptide binding, but not by the cytosolic domains of the alpha- and beta-chains. J Immunol 1998; 161: 2106–2113.

    CAS  PubMed  Google Scholar 

  49. Filaci G et al. Double-stranded deoxyribonucleic acid binds to HLA class II molecules and inhibits HLA class II-mediated antigen presentation. Eur J Immunol 1998; 28: 3968–3979.

    Article  CAS  Google Scholar 

  50. Gruenberg J . The endocytic pathway: a mosaic of domains. Nat Rev Mol Cell Biol 2001; 2: 721–730.

    Article  CAS  Google Scholar 

  51. Miaczynska M, Zerial M . Mosaic organization of the endocytic pathway. Exp Cell Res 2002; 272: 8–14.

    Article  CAS  Google Scholar 

  52. Mahnke K et al. The dendritic cell receptor for endocytosis, DEC-205, can recycle and enhance antigen presentation via major histocompatibility complex class II-positive lysosomal compartments. J Cell Biol 2000; 151: 673–684.

    Article  CAS  Google Scholar 

  53. Witmer-Pack MD et al. Tissue distribution of the DEC-205 protein that is detected by the monoclonal antibody NLDC-145. II. Expression in situ in lymphoid and nonlymphoid tissues. Cell Immunol 1995; 163: 157–162.

    Article  CAS  Google Scholar 

  54. Engering A et al. The dendritic cell-specific adhesion receptor DC-SIGN internalizes antigen for presentation to T cells. J Immunol 2002; 168: 2118–2126.

    Article  CAS  Google Scholar 

  55. McKay PF et al. The gp200-MR6 molecule which is functionally associated with the IL-4 receptor modulates B cell phenotype and is a novel member of the human macrophage mannose receptor family. Eur J Immunol 1998; 28: 4071–4083.

    Article  CAS  Google Scholar 

  56. Perucho M, Wigler M . Linkage and expression of foreign DNA in cultured animal cells. Cold Spring Harb Symp Quant Biol 1981; 45: 829–838.

    Article  CAS  Google Scholar 

  57. Kamiya H, Tsuchiya H, Yamazaki J, Harashima H . Intracellular trafficking and transgene expression of viral and non-viral gene vectors. Adv Drug Deliv Rev 2001; 52: 153–164.

    Article  CAS  Google Scholar 

  58. Temin HM . Overview of biological effects of addition of DNA molecules to cells. J Med Virol 1990; 31: 13–17.

    Article  CAS  Google Scholar 

  59. Lanzavecchia A . Antigen-specific interaction between T and B cells. Nature 1985; 314: 537–539.

    Article  CAS  Google Scholar 

  60. Kovacsovics-Bankowski M, Rock KL . A phagosome-to-cytosol pathway for exogenous antigens presented on MHC class I molecules. Science 1995; 267: 243–246.

    Article  CAS  Google Scholar 

  61. Rock KL, Gamble S, Rothstein L . Presentation of exogenous antigen with class I major histocompatibility complex molecules. Science 1990; 249: 918–921.

    Article  CAS  Google Scholar 

  62. Pfeifer JD et al. Phagocytic processing of bacterial antigens for class I MHC presentation to T cells. Nature 1993; 361: 359–362.

    Article  CAS  Google Scholar 

  63. Rodriguez A et al. Selective transport of internalized antigens to the cytosol for MHC class I presentation in dendritic cells. Nat Cell Biol 1999; 1: 362–368.

    Article  CAS  Google Scholar 

  64. Castellino F et al. Receptor-mediated uptake of antigen/heat shock protein complexes results in major histocompatibility complex class I antigen presentation via two distinct processing pathways. J Exp Med 2000; 191: 1957–1964.

    Article  CAS  Google Scholar 

  65. Sutkowski N et al. A murine model for B-lymphocyte somatic cell gene therapy. Proc Natl Acad Sci USA 1994; 91: 8875–8879.

    Article  CAS  Google Scholar 

  66. Zambidis ET, Kurup A, Scott DW . Genetically transferred central and peripheral immune tolerance via retroviral-mediated expression of immunogenic epitopes in hematopoietic progenitors or peripheral B lymphocytes. Mol Med 1997; 3: 212–224.

    Article  CAS  Google Scholar 

  67. Hogan KT, Brown SL . Localization and characterization of serologic epitopes on HLA-A2. Hum Immunol 1992; 33: 185–192.

    Article  CAS  Google Scholar 

  68. Morrison SL, Johnson MJ, Herzenberg LA, Oi VT . Chimeric human antibody molecules:mouse antigen-binding domains with human constant region domains. Proc Natl Acad Sci USA 1984; 81: 6851–6855.

    Article  CAS  Google Scholar 

  69. Sollazzo M et al. Structural definition by antibody engineering of an idiotypic determinant. Protein Eng 1990; 3: 531–539.

    Article  CAS  Google Scholar 

  70. Xiong S, Gerloni M, Zanetti M . In vivo role of B lymphocytes in somatic transgene immunization. Proc Natl Acad Sci USA 1997; 94: 6352–6357.

    Article  CAS  Google Scholar 

  71. Fiocca R et al. Release of Helicobacter pylori vacuolating cytotoxin by both a specific secretion pathway and budding of outer membrane vesicles. Uptake of released toxin and vesicles by gastric epithelium. J Pathol 1999; 188: 220–226.

    Article  CAS  Google Scholar 

  72. Fiocca R et al. Widespread expression of intestinal markers in gastric carcinoma: a light and electron microscopic study using BD-5 monoclonal antibody. J Clin Pathol 1988; 41: 178–187.

    Article  CAS  Google Scholar 

  73. Temponi M et al. Characterization of anti-HLA class II monoclonal antibody LGII-612.14 reacting with formalin fixed tissues. J Immunol Methods 1993; 161: 239–256.

    Article  CAS  Google Scholar 

  74. Minev B et al. Cytotoxic T cell immunity against telomerase reverse transcriptase in humans. Proc Natl Acad Sci USA 2000; 97: 4796–4801.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to Drs MG Farquhar, W Loomis, and J Urbain for critical reading of the manuscript and their helpful suggestions. We also thank G Almanza and I LacKamp (Cosmo Bioscience) for their help in the performance of PCR work and A Necchi (University of Pavia) for assistance with the electron microscopy. This work was supported in part by a grant from the School of Medicine of the University of California, San Diego, and NIH Grants RO1CA77427 and R21AI49771 (to MZ). GF was a recipient of a short-term mobility grant from Consiglio Nazionale delle Ricerche and from the Compagnia di SanPaolo (Italy).

Author information

Authors and Affiliations

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filaci, G., Gerloni, M., Rizzi, M. et al. Spontaneous transgenesis of human B lymphocytes. Gene Ther 11, 42–51 (2004). https://doi.org/10.1038/sj.gt.3302132

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/sj.gt.3302132

Keywords

This article is cited by

Search

Quick links