Abstract
The sulphur isotope composition of the mantle has been generally considered to be 0±2‰1. There is, however, considerable uncertainty in the mean δ34S value of the mantle and in its range because there have been very few analyses of unaltered sulphide phases of direct mantle origin1–4 and δ34S values of sulphides from large mafic intrusions range from –9 to +17‰5. We report here ion microprobe δ34S determinations from two mantle derived sulphide inclusions (≈100 µm) preserved in a diamond (δ13C = –4.25‰) of peridotitic(?) paragenesis from Premier (South Africa) and in four diamonds of eclogitic paragenesis from Orapa (Botswana). Three octahedral sulphides have lower δ34S values (+2.3±1.4‰) than three platelet-like sulphides (+8.2±0.9‰). This evidence for mantle heterogeneity for sulphur is interpreted in terms of recycling of crustal material into the eclogitic region of diamond growth in the mantle.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
1. Nielsen, J. in Lectures in Isotopes Geology, (eds Jager, E. & Hunziker, J. C.) 283-312 (Springer, Berlin, 1979). 2. Schneider, A. Contr. Mineral. Petrol. 25, 95-124 (1970). 3. Grinenko, V. A., Dmitriev, L. V., Migdisov, A. A. & Sharas'kin, A. Ya. Geochem. Int. 12, 132-137 (1975). 4. Tsai, H. M., Shieh, Y. & Meyer, H. O. A. in The Mantle Samples: Inclusions in Kimberlites and Other Volcanics Vol. 2 (eds Boyd, F. R. & Meyer, H. O. A.) 87-103 (American Geophysical Union, Washington DC, 1979). 5. Ohmoto, H. in Stable Isotopes in High Temperature Geological Processes. Reviews in Mineralogy Vol. 16 (ed. Ribbe, P. H.) 491-556 (Mineralogical Society of America, Washington DC, 1987). 6. Skinner, B. J. & Peck, D. L. Econ. Geol. Monogr. 4, 310-322 (1969). 7. Harris, J. W. Contr. Mineral. Petrol. 35, 22-33 (1972). 8. Kanehira, K., Yui, S., Sakai, H. & Sasaki, A. Geochem. J. 7, 89-96 (1973). 9. Mathez, E. A. /. geophys. Res. 81, 4269-4276 (1976). 10. Lorand, J.-P. & Conquere, F. Bull. Mineral. 106, 585-605 (1983). 11. Craig, J. R. & Kullerud, G. Econ. Geol. Monogr. 4, 344-358 (1969). 12. Lorand, J.-P. Bull. Soc. geol. France 8, III, 643-656 (1987). 13. Efimova, E. S., Sobolev, N. V. & Pospelova, S. N. Lett. All Union Mineral. Soc. 3, 300-310 (1983). 14. Deines, P., Gurney, J. J. & Harris, J. W. Geochim. cosmochim. Acta 48, 325-342 (1984). 15. Meyer, H. O. A. Am. Miner. 70, 344-355 (1985). 16. Deloule, E., Allegre, C. & Doe, B. Econ. Geol. 81, 1307-1321 (1986). 17. Haggerty, S. E. Nature 320, 34-38 (1986). 18. Swart, P. K., Pillinger, C. T, Milledge, H. J. & Seal, M. Nature 303, 793-795 (1983). 19. Thode, H. G., Monster, J. & Dunford, H. B. Geochim. cosmochim. Acta 25, 159-174 (1961). 20. Kaplan, I. R. & Hulston, J. R. Geochim. cosmochim. Acta. 30, 479-496 (1966). 21. Shima, M., Gross, W. H. & Thode, H. G. / geophys. Res. 68, 2835-2847 (1963). 22. Sakai, H., Des Marais, D. J., Ueda, A. & Moore, J. G. Geochim. cosmochim. Acta 48, 2433-2441 (1984). 23. Chaussidon, M., Albarede, F. & Sheppard, S. M. F. £05 68, 440 (1987). 24. Sakai, H. Geochim. cosmochim. Acta 12, 150-169 (1957). 25. Ohmoto, H. and Rye, R. O. in Geochemistry of Hydrothermal Ore Deposits 2nd ed (ed. Barnes, H. L.) 509-567 (Wiley, New York, 1979). 26. Albarede, F. & Michard, A. Chem. Geol. 57, 1-15 (1986). 27. Javoy, M., Pineau, F. & Demaiffe, D. Earth planet. Sci. Lett. 68, 399-412 (1984). 28. Woodhead, J. D., Harmon, R. S. & Fraser, D. G. Earth planet. Sci. Lett. 83, 39-52 (1987). 29. Schidlowski, M., Hayes, J. M. & Kaplan, I. R. in The Earth's Earliest Biosphere. Its Origin and Evolution (ed. Schopf, J. W.) 149-186 (1983). 30. Richardson, S. H., Gurney, J. J., Erlank, A. J. & Harris, J. W. Nature 310, 198-202 (1984). 31. Richardson, S. H. Nature 322, 623-626 (1986). 32. Davis, G. L. 2nd Int. Kimb. Conf. Santa Fe, Abstr. (1977). 33. Deines, P., Harris, J. W. & Gurney, J. J. Geochim. cosmochim. Acta 51, 1227-1243 (1987). 34. Gurney, J. J., Harris, J. W. & Rickard, R. S. in Kimberlites II: The Mantle and Crust-Mantle Relationships (ed. Kornprobst, J.) 3-9 (Elsevier, Amsterdam, 1984).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Chaussidon, M., Albarède, F. & Sheppard, S. Sulphur isotope heterogeneity in the mantle from ion microprobe measurements of sulphide inclusions in diamonds. Nature 330, 242–244 (1987). https://doi.org/10.1038/330242a0
Received:
Accepted:
Issue date:
DOI: https://doi.org/10.1038/330242a0
This article is cited by
-
Imperfections in natural diamond: the key to understanding diamond genesis and the mantle
La Rivista del Nuovo Cimento (2023)
-
High-pressure phase relations in the system Fe–Ni–Cu–S up to 14 GPa: implications for the stability of sulfides in the earth’s upper mantle
Contributions to Mineralogy and Petrology (2022)
-
High S and high CO2 contents in haplokimberlite: An experimental and Raman spectroscopic study
Mineralogy and Petrology (2020)
-
Degassing-induced fractionation of multiple sulphur isotopes unveils post-Archaean recycled oceanic crust signal in hotspot lava
Nature Communications (2018)
-
Origin and tectonic implications of the Zhaxikang Pb–Zn–Sb–Ag deposit in northern Himalaya: evidence from structures, Re–Os–Pb–S isotopes, and fluid inclusions
Mineralium Deposita (2018)