Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Differential internalization and nuclear uncoating of self-complementary adeno-associated virus pseudotype vectors as determinants of cardiac cell transduction

Abstract

Recently it was shown that several new pseudotyped adeno-associated virus (AAV) vectors support cardioselective expression of transgenes. The molecular mechanisms underlying this propensity for cardiac cell transduction are not well understood. We comparatively analyzed AAV vector attachment, internalization, intracellular trafficking, and nuclear uncoating of recombinant self-complementary (sc) AAV2.2 versus pseudotyped scAAV2.6 vectors expressing green fluorescence protein (GFP) in cells of cardiac origin. In cardiac-derived HL-1 cells and primary neonatal rat cardiomyocytes (PNCMs), expression of GFP increased rapidly after incubation with scAAV2.6-GFP, but remained low after scAAV2.2-GFP. Internalization of scAAV2.6-GFP was more efficient than that of scAAV2.2-GFP. Nuclear translocation was similarly efficient for both, but differential nuclear uncoating rates emerged as a key additional determinant of transduction: 30% of all scAAV2.6-GFP genomes translocated to the nucleus became uncoated within 48 h, but only 16% of scAAV2.2-GFP genomes. In contrast to this situation in cells of cardiac origin, scAAV2.2-GFP displayed more efficient internalization and similar (tumor cell line HeLa) or higher (human microvascular endothelial cell (HMEC)) uncoating rates than scAAV.2.6-GFP in non-cardiac cell types. In summary, both internalization and nuclear uncoating are key determinants of cardiac transduction by scAAV2.6 vectors. Any in vitro screening for the AAV pseudotype most suitable for cardiac gene therapy – which is desirable since it may allow significant reductions in vector load in upcoming clinical trials – needs to quantitate both key steps in transduction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

AAV:

adeno-associated virus

HeLa:

tumor cell line

HL-1:

cardiac-derived stable cell line

HMEC:

human microvascular endothelial cell

PNCMs:

primary neonatal rat cardiomyocytes

scAAV2.2:

self-complementary AAV2 vector

scAAV2.6:

self-complementary pseudotyped AAV2.6 vector

References

  1. Pachori AS, Melo LG, Zhang L, Solomon SD, Dzau VJ . Chronic recurrent myocardial ischemic injury is significantly attenuated by pre-emptive adeno-associated virus heme oxygenase-1 gene delivery. J Am Coll Cardiol 2006; 47: 635–643.

    Article  CAS  PubMed  Google Scholar 

  2. Liu X, Pachori AS, Ward CA, Davis JP, Gnecchi M, Kong D et al. Heme oxygenase-1 (HO-1) inhibits postmyocardial infarct remodeling and restores ventricular function. FASEB J 2006; 20: 207–216.

    Article  CAS  PubMed  Google Scholar 

  3. Chen CL, Jensen RL, Schnepp BC, Connell MJ, Shell R, Sferra TJ et al. Molecular characterization of adeno-associated viruses infecting children. J Virol 2005; 79: 14781–14792.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Zhu T, Zhou L, Mori S, Wang Z, McTiernan CF, Qiao C et al. Sustained whole-body functional rescue in congestive heart failure and muscular dystrophy hamsters by systemic gene transfer. Circulation 2005; 112: 2650–2659.

    Article  CAS  PubMed  Google Scholar 

  5. Kitajima K, Marchadier DH, Burstein H, Rader DJ . Persistent liver expression of murine apoA-l using vectors based on adeno-associated viral vectors serotypes 5 and 1. Atherosclerosis 2006; 186: 65–73.

    Article  CAS  PubMed  Google Scholar 

  6. Flierl A, Chen Y, Coskun PE, Samulski RJ, Wallace DC . Adeno-associated virus-mediated gene transfer of the heart/muscle adenine nucleotide translocator (ANT) in mouse. Gene Therapy 2005; 12: 570–578.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Su H, Joho S, Huang Y, Barcena A, Arakawa-Hoyt J, Grossman W et al. Adeno-associated viral vector delivers cardiac-specific and hypoxia-inducible VEGF expression in ischemic mouse hearts. Proc Natl Acad Sci USA 2006; 101: 16280–16285.

    Article  Google Scholar 

  8. Kaspar BK, Roth DM, Lai NC, Drumm JD, Erickson DA, McKirnan MD et al. Myocardial gene transfer and long-term expression following intracoronary delivery of adeno-associated virus. J Gene Med 2005; 7: 316–324.

    Article  CAS  PubMed  Google Scholar 

  9. Champion HC, Georgakopoulos D, Haldar S, Wang L, Wang Y, Kass DA . Robust adenoviral and adeno-associated viral gene transfer to the in vivo murine heart: application to study of phospholamban physiology. Circulation 2003; 108: 2790–2797.

    Article  CAS  PubMed  Google Scholar 

  10. Iwanaga Y, Hoshijima M, Gu Y, Iwatate M, Dieterle T, Ikeda Y et al. Chronic phospholamban inhibition prevents progressive cardiac dysfunction and pathological remodeling after infarction in rats. J Clin Invest 2004; 113: 727–736.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Hoshijima M, Ikeda Y, Iwanaga Y, Minamisawa S, Date M, Gu Y et al. Chronic suppression of heart-failure progression by a pseudophosphorylated mutant of phospholamban via in vivo cardiac rAAV gene delivery. Nat Med 2002; 8: 864–871.

    Article  CAS  PubMed  Google Scholar 

  12. Li D, Liu Y, Chen J, Velchala N, Amani F, Nemarkommula A et al. Suppression of atherogenesis by delivery of TGFα1ACT using adeno-associated virus type 2 in LDLR knockout mice. Biochem Biophys Res Commun 2006; 344: 701–707.

    Article  CAS  PubMed  Google Scholar 

  13. Muller O, Kaul F, Weitzman M, Pasqualini R, Arap W, Kleinschmidt J et al. Random peptide libraries displayed on adeno-associated virus to select for targeted gene therapy vectors. Nat Biotechnol 2003; 21: 1040–1046.

    Article  PubMed  Google Scholar 

  14. Schmidt M, Grot E, Cervenka P, Wainer S, Buck C, Chiorini JA . Identification and characterization of novel adeno-associated virus isolates in ATCC virus stocks. J Virol 2006; 80: 5082–5085.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Gao GP, Lu Y, Sun X, Johnston J, Calcedo R, Grant R et al. High-level transgene expression in nonhuman primate liver with novel adeno-associated virus serotypes containing self-complementary genomes. J Virol 2006; 80: 6192–6194.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. De BP, Heguy A, Hackett NR, Ferris B, Leopold PL, Lee J et al. High levels of persistent expression of alpha1-antitrypsin mediated by the nonhuman primate serotype rh.10 adeno-associated virus despite preexisting immunity to common human adeno-associated viruses. Mol Ther 2006; 13: 67–76.

    Article  CAS  PubMed  Google Scholar 

  17. Gao GP, Alvira MR, Wang L, Calcedo R, Johnston J, Wilson JM . Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci USA 2002; 99: 11854–11859.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Gao G, Lu Y, Calcedo R, Grant RL, Bell P, Wang L et al. Biology of AAV serotype vectors in liver-directed gene transfer to nonhuman primates. Mol Ther 2006; 13: 77–87.

    Article  CAS  PubMed  Google Scholar 

  19. Chiorini JA, Afione S, Kotin RM . Adeno-associated virus (AAV) type 5 Rep protein cleaves a unique terminal resolution site compared with other AAV serotypes. J Virol 1999; 73: 4293–4298.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Rutledge EA, Halbert CL, Russell DW . Infectious clones and vectors derived from adeno-associated virus (AAV) serotypes other than AAV type 2. J Virol 1998; 72: 309–319.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Wu Z, Asokan A, Grieger JC, Govindasamy L, Agbandje-McKenna M, Samulski RJ . Single amino acid changes can influence titer, heparin binding, and tissue tropism in different adeno-associated virus serotypes. J Virol 2006; 80: 11393–11397.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Ding W, Zhang L, Yan Z, Engelhardt JF . Intracellular trafficking of adeno-associated viral vectors. Gene Therapy 2005; 12: 873–880.

    Article  CAS  PubMed  Google Scholar 

  23. Seiler MP, Miller AD, Zabner J, Halbert CL . Adeno-associated virus types 5 and 6 use distinct receptors for cell entry. Hum Gene Ther 2006; 17: 10–19.

    Article  CAS  PubMed  Google Scholar 

  24. Fechner H, Haack A, Wang H, Wang X, Eizema K, Pauschinger M et al. Expression of Coxsackie-adenovirus-receptor and αω-integrin does not correlate with adenovector targeting in vivo indicating anatomical vector barriers. Gene Therapy 1999; 6: 1520–1535.

    Article  CAS  PubMed  Google Scholar 

  25. Hauck B, Zhao W, High K, Xiao W . Intracellular viral processing, not single-stranded DNA accumulation, is crucial for recombinant adeno-associated virus transduction. J Virol 2004; 78: 13678–13686.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Zhao W, Zhong L, Wu J, Chen L, Qing K, Weigel-Kelley KA et al. Role of cellular FKBP52 protein in intracellular trafficking of recombinant adeno-associated virus 2 vectors. Virology 2006; 353: 283–293.

    Article  CAS  PubMed  Google Scholar 

  27. Thomas CE, Storm TA, Huang Z, Kay MA . Rapid uncoating of vector genomes is the key to efficient liver transduction with pseudotyped adeno-associated virus vectors. J Virol 2004; 78: 3110–3122.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Ding W, Zhang LN, Yeaman C, Engelhardt JF . rAAV2 traffics through both the late and the recycling endosomes in a dose-dependent fashion. Mol Ther 2006; 13: 671–682.

    Article  CAS  PubMed  Google Scholar 

  29. Ding W, Yan Z, Zak R, Saavedra M, Rodman DM, Engelhardt JF . Second-strand genome conversion of adeno-associated virus type 2 (AAV-2) and AAV-5 is not rate limiting following apical infection of polarized human airway epithelia. J Virol 2003; 77: 7361–7366.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. McCarty D, Monahan P, Samulski R . Self-complementary recombinant adeno-associated virus (scAAV) vectors promote efficient transduction independently of DNA synthesis. Gene Therapy 2001; 8: 1248–1254.

    Article  CAS  PubMed  Google Scholar 

  31. Zhong L, Li W, Yang Z, Qing K, Tan M, Hansen J et al. Impaired nuclear transport and uncoating limit recombinant adeno-associated virus 2 vector-mediated transduction of primary murine hematopoietic cells. Hum Gene Ther 2004; 15: 1207–1218.

    Article  CAS  PubMed  Google Scholar 

  32. Muller OJ, Leuchs B, Pleger ST, Grimm D, Franz WM, Katus HA et al. Improved cardiac gene transfer by transcriptional and transductional targeting of adeno-associated viral vectors. Cardiovasc Res 2006; 70: 70–78.

    Article  PubMed  Google Scholar 

  33. Kawamoto S, Shi Q, Nitta Y, Miyazaki J, Allen MD . Widespread and early myocardial gene expression by adeno-associated virus vector type 6 with a β-actin hybrid promoter. Mol Ther 2005; 11: 980–985.

    Article  CAS  PubMed  Google Scholar 

  34. Wang Z, Zhu T, Qiao C, Zhou L, Wang B, Zhang J et al. Adeno-associated virus serotype 8 efficiently delivers genes to muscle and heart. Nat Biotechnol 2005; 23: 321–328.

    Article  CAS  PubMed  Google Scholar 

  35. Arnold GS, Sasser AK, Stachler MD, Bartlett JS . Metabolic biotinylation provides a unique platform for the purification and targeting of multiple AAV vector serotypes. Mol Ther 2006; 14: 97–106.

    Article  CAS  PubMed  Google Scholar 

  36. Ferrari F, Samulski T, Shenk T, Samulski R . Second-strand synthesis is a rate-limiting step for efficient transduction by recombinant adeno-associated virus vectors. J Virol 1996; 70: 3227–3234.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Fisher K, Gao G-P, Weitzman M, DeMatteo R, Burda J, Wilson J . Transduction with recombinant adeno-associated virus for gene therapy is limited by leading-strand synthesis. J Virol 1996; 70: 520–532.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang Z, Ma HI, Li J, Sun L, Zhang J, Xiao X . Rapid and highly efficient transduction by double-stranded adeno-associated virus vectors in vitro and in vivo. Gene Therapy 2003; 10: 2105–2111.

    Article  CAS  PubMed  Google Scholar 

  39. Gregorevic P, Blankinship M, Allen J, Crawford R, Meuse L, Miller D et al. Systemic delivery of genes to striated muscles using adeno-associated viral vectors. Nat Med 2004; 10: 828–834.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Blankinship MJ, Gregorevic P, Allen JM, Harper SQ, Harper H, Halbert CL et al. Efficient transduction of skeletal muscle using vectors based on adeno-associated virus serotype 6. Mol Ther 2004; 10: 671–678.

    Article  CAS  PubMed  Google Scholar 

  41. Summerford C, Bartlett J, Samulski R . αvβ5 integrin: a co-receptor for adeno-associated virus type 2 infection. Nat Med 1999; 5: 78–82.

    Article  CAS  PubMed  Google Scholar 

  42. Wu Z, Miller E, Agbandje-McKenna M, Samulski RJ . Alpha2, 3 and alpha2, 6 N-linked sialic acids facilitate efficient binding and transduction by adeno-associated virus types 1 and 6. J Virol 2006; 80: 9093–9103.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Akache B, Grimm D, Pandey K, Yant SR, Xu H, Kay MA . The 37/67-kilodalton laminin receptor is a receptor for adeno-associated virus serotypes 8, 2, 3, and 9. J Virol 2006; 80: 9831–9836.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Seisenberger G, Ried MU, Endress T, Buning H, Hallek M, Brauchle C . Real-time single-molecule imaging of the infection pathway of an adeno-associated virus. Science 2001; 294: 1929–1932.

    Article  CAS  PubMed  Google Scholar 

  45. Summerford C, Samulski R . Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions. J Virol 1998; 72: 1438–1445.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kashiwakura Y, Tamayose K, Iwabuchi K, Hirai Y, Shimada T, Matsumoto K et al. Hepatocyte growth factor receptor is a coreceptor for adeno-associated virus type 2 infection. J Virol 2005; 79: 609–614.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Sanlioglu S, Benson PK, Yang J, Atkinson EM, Reynolds T, Engelhardt JF . Endocytosis and nuclear trafficking of adeno-associated virus type 2 are controlled by rac1 and phosphatidylinositol-3 kinase activation. J Virol 2000; 74: 9184–9196.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Xiao W, Warrington Jr KH, Hearing P, Hughes J, Muzyczka N . Adenovirus-facilitated nuclear trans-location of adeno-associated virus type 2. J Virol 2002; 76: 11505–11517.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Hansen J, Qing K, Srivastava A . Adeno-associated virus type 2-mediated gene transfer: altered endo-cytic processing enhances transduction efficiency in murine fibroblasts. J Virol 2001; 75: 4080–4090.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Zhao W, Wu J, Zhong L, Srivastava A . Adeno-associated virus 2-mediated gene transfer: role of a cellular serine/threonine protein phosphatase in augmenting transduction efficiency. Gene Therapy 2007; 14: 545–550.

    Article  CAS  PubMed  Google Scholar 

  51. Bartlett J, Wilcher R, Samulski R . Infectious entry pathway of adeno-associated virus and adeno-associated virus vectors. J Virol 1999; 74: 2777–2785.

    Article  Google Scholar 

  52. Inagaki K, Fuess S, Storm TA, Gibson GA, McTiernan CF, Kay MA et al. Robust systemic transduction with AAV9 vectors in mice: efficient global cardiac gene transfer superior to that of AAV8. Mol Ther 2006; 14: 45–53.

    Article  CAS  PubMed  Google Scholar 

  53. Vandendriessche T, Thorrez L, Acosta-Sanchez A, Petrus I, Wang L, Ma L et al. Efficacy and safety of adeno-associated viral vectors based on serotype 8 and 9 vs lentiviral vectors for hemophilia B gene therapy. J Thromb Haemost 2007; 5: 16–24.

    Article  CAS  PubMed  Google Scholar 

  54. Pacak CA, Mah CS, Thattaliyath BD, Conlon TJ, Lewis MA, Cloutier DE et al. Recombinant adeno-associated virus serotype 9 leads to preferential cardiac transduction in vivo. Circ Res 2006; 99: e3–e9.

    Article  CAS  PubMed  Google Scholar 

  55. Fechner H, Wang X, Srour M, Siemetzki U, Seltmann H, Sutter A et al. A novel tetracycline-controlled transactivator–transrepressor system enables external control of oncolytic adenovirus replication. Gene Therapy 2003; 10: 1680–1690.

    Article  CAS  PubMed  Google Scholar 

  56. Zolotukhin S, Byrne B, Mason E, Zolotukhin I, Potter M, Chesnut K et al. Recombinant adeno-associated virus purification using novel methods improves infectious titer and yield. Gene Therapy 1999; 6: 973–985.

    Article  CAS  PubMed  Google Scholar 

  57. Hansen J, Qing K, Kwon HJ, Mah C, Srivastava A . Impaired intracellular trafficking of adeno-associated virus type 2 vectors limits efficient transduction of murine fibroblasts. J Virol 2000; 74: 992–996.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Hansen J, Qing K, Srivastava A . Infection of purified nuclei by adeno-associated virus 2. Mol Ther 2001; 4: 289–296.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work has been supported by Deutsche Forschungsgemeinschaft through SFB Transregio 19 (project grant C5 to WP and HF) and through grant Po 378/6-1 to WP. We thank Roland Vetter for its assistance in PNCM isolation.

Author information

Authors and Affiliations

Corresponding author

Correspondence to W Poller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sipo, I., Fechner, H., Pinkert, S. et al. Differential internalization and nuclear uncoating of self-complementary adeno-associated virus pseudotype vectors as determinants of cardiac cell transduction. Gene Ther 14, 1319–1329 (2007). https://doi.org/10.1038/sj.gt.3302987

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/sj.gt.3302987

Keywords

This article is cited by

Search

Quick links