Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Basic fibroblast growth factor fused to a signal peptide transforms cells

Abstract

Basic fibroblast growth factor (bFGF) is a potent growth and angiogenic factor that is found in abundance in tissues such as brain, hypothalamus, kidney and cartilage1,2. Despite this copious production of bFGF, most of these tissues are not undergoing either active growth or angiogenesis, suggesting that bFGF activity must be regulated so as to prevent autostimulation of cell growth. In cultured cells, bFGF is associated mainly with cells and basement membranes and is not released into the medium3,4. Prevention of release could be a mechanism for regulation of bFGF activity and may be a consequence of the apparent absence of a secretory-signal sequence in the bFGF protein5. Here we investigate whether this regulation can be overridden through the forced secretion of bFGF. Such secretion might provide the bFGF access to its receptor and in turn lead to autocrine transformation of the cell. We report that bFGF, as specified by a recombinant plasmid, is itself unable to induce such transformation, but acquires this ability after fusion with a secretory-signal sequence. The resulting transformants undergo unusual morphological alteration and display tumorigenicity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Folkman, J. & Klagsbrun, M. Science 235, 442–447 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Baird, A. et al. Recent Progress in Hormone Research 42, 143–205 (1986).

    CAS  PubMed  Google Scholar 

  3. Klagsbrun, M., Sasse, J., Sullivan, R. & Smith, J. A. Proc. natn. Acad. Sci. U.S.A. 83, 2448–2452 (1986).

    Article  ADS  CAS  Google Scholar 

  4. Vlodavsky, I. et al. Proc. natn. Acad. Sci. U.S.A. 84, 2292–2296 (1987).

    Article  ADS  CAS  Google Scholar 

  5. Abraham, J. A. et al. Science 233, 545–548 (1986).

    Article  ADS  CAS  Google Scholar 

  6. Loh, D. Y., Bothwell, A. L. M., White-Scharf, M. E., Imanishi-Kari, T. & Baltimore, D. Cell 33, 85–93 (1983).

    Article  CAS  Google Scholar 

  7. Stern, D. F., Hare, D. L., Cecchini, M. A. & Weinberg, R. A. Science 235, 321–324 (1987).

    Article  ADS  CAS  Google Scholar 

  8. Smotkin, D., Gianni, A. M., Rozenblatt, S. & Weinberg, R. A. Proc. natn. Acad. Sci. U.S.A. 72, 4910–4913 (1975).

    Article  ADS  CAS  Google Scholar 

  9. Southern, P. J. & Berg, P. J. molec. appl. Genet. 1, 327–332 (1982).

    CAS  Google Scholar 

  10. Ziegler, S. F., Whitlock, C. A., Goff, S. P., Gifford, A. & Witte, O. N. Cell 27, 477–486 (1981).

    Article  CAS  Google Scholar 

  11. Leal, F., Williams, L. T., Robbins, K. C. & Aaronson, S. A. Science 230, 327–330 (1985).

    Article  ADS  CAS  Google Scholar 

  12. Robbins, K. C., Leal, F., Pierce, J. H. & Aaronson, S. A. EMBO J. 4, 1783–1792 (1985).

    Article  CAS  Google Scholar 

  13. Betsholtz, C., Westermark, B., Ek, B. & Heldin, C.-H. Cell 39, 447–457 (1984).

    Article  CAS  Google Scholar 

  14. Lang, R. A., Metcalf, D., Gough, N. M., Dunn, A. R. & Gonda, T. D. Cell 43, 531–542 (1985).

    Article  CAS  Google Scholar 

  15. Rettenmier, C. W. et al. Molec. cell. Biol. 7, 2378–2387 (1987).

    Article  CAS  Google Scholar 

  16. Watanabe, S., Lazar, E. & Sporn, M. B. Proc. natn. Acad. Sci. U.S.A. 84, 1258–1262 (1987).

    Article  ADS  CAS  Google Scholar 

  17. Rosenthal, A., Lindquist, P. B., Bringman, T. S., Goeddel, D. V. & Derynck, R. Cell 46, 301–309 (1986).

    Article  CAS  Google Scholar 

  18. Finzi, E. et al. Proc. natn. Acad. Sci. U.S.A. 84, 3733–3737 (1987).

    Article  ADS  CAS  Google Scholar 

  19. Dickson, C. & Peters, G. Nature 326, 833 (1987).

    Article  ADS  CAS  Google Scholar 

  20. Taira, M. et al. Proc. natn. Acad. Sci. U.S.A. 84, 2980–2984 (1987).

    Article  ADS  CAS  Google Scholar 

  21. Marx, J. L. Science 237, 602–603 (1987).

    Article  ADS  CAS  Google Scholar 

  22. Laemmli, U. K. Nature 227, 680–685 (1970).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rogelj, S., Weinberg, R., Fanning, P. et al. Basic fibroblast growth factor fused to a signal peptide transforms cells. Nature 331, 173–175 (1988). https://doi.org/10.1038/331173a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/331173a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing