Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evidence from 29Si NMR for the structure of mixed-layer illite/smectite clay minerals

Abstract

Understanding the crystal structure of mixed-layer illite/smectite (I/S) is important to studies of petroleum migration1 and maturation2, geopressure development3, sandstone cementation4, and thermal histories of sedimentary5 and hydrothermally altered6 rocks. The crystallographic nature of I/S minerals is presently described by two competing theories, one based on Markov theory7 and the other based on transmission electron microscopy of thin crystallites, called 'fundamental particles'8. Here we present 29Si NMR data obtained using an inversion/recovery technique9, which allows direct analysis of the Si/Al(4) ratios of individual illite and smectite components in I/S. The NMR results show that illite-rich I/S contains both high-charge and Al-rich (illite) and low-charge and Al-poor (smectite) structural environments. These results are best represented by the Markovian model of I/S. The NMR data are most consistent with the interpretation that the top and bottom tetrahedral sheets of both MacEwan crystallites and fundamental particles are smectitic. Fundamental particles are best interpreted as large crystallites of I/S that have been separated by osmotic swelling of Li+ and Na+ in smectite interlayers. Thermodynamic studies10 should consider illite-rich I/S as two phases, rather than as one phase, as suggested in previous investigations8,11–15.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Powers, M. C. Bull. Am. Ass. Petrol. Geol. 51, 1240–1254 (1967).

    Google Scholar 

  2. Johns, W. D. Proc. int. Clay Conf. Vol. 7 (eds van Olphen, H. & Veniale, F.) 655–664 (Elsevier, New York, 1982).

    Google Scholar 

  3. Bethke, C. M. J. geophys. Res. 91, 6535–6545 (1986).

    Article  ADS  Google Scholar 

  4. Boles, J. R. & Franks, S. G. J. sedim. Petrol. 49, 55–70 (1979).

    CAS  Google Scholar 

  5. Hoffman, J. & Hower, J. Spec. Publs Soc. econ. Paleont. Miner. 26, 55–79 (1979).

    Google Scholar 

  6. Horton, D. G. Contr. Miner. Petrol. 91, 171–179 (1985).

    Article  ADS  Google Scholar 

  7. Reynolds, R. C. in Crystal Structures of Clay Minerals and their X-ray Identification (eds Brindley, G. W. & Brown, G.) 249–303 (Mineralogical Society, London, 1980).

    Google Scholar 

  8. Nadeau, P. H., Wilson, M. J. McHardy, W. J. & Tait, J. M. Science 225, 923–925 (1984).

    Article  ADS  CAS  Google Scholar 

  9. Barron, P. F., Slade, P. & Frost, R. L. J. phys. Chem. 89, 3880–3885 (1985).

    Article  CAS  Google Scholar 

  10. Garrels, R. M. Clays Clay Miner. 32, 161–166 (1984).

    Article  ADS  CAS  Google Scholar 

  11. Nadeau, P. H., Wilson, M. J., McHardy, W. J. & Tait, J. M. Clay Miner. 19, 757–769 (1984).

    Article  ADS  CAS  Google Scholar 

  12. Nadeau, P. H. & Bain, D. C. Clays Clay Miner. 34, 455–464 (1986).

    Article  ADS  CAS  Google Scholar 

  13. Wilson, M. J. & Nadeau, P. H. in The Chemistry of Weathering (ed. Drever, J. I.) 97–118 (Macaulay Institute for Soil Research, Aberdeen, 1985).

    Book  Google Scholar 

  14. Eberl, D. D., Srodon, J., Lee, M., Nadeau, P. H. & Northrop, H. R. Am. Miner. 72, 914–934 (1987).

    CAS  Google Scholar 

  15. Inoue, A., Kohyama, N., Kitagawa, R. & Watanabe, T. Clays Clay Miner. 35, 111–120 (1987).

    Article  ADS  CAS  Google Scholar 

  16. Reynolds, R. C. & Hower, J. Clays Clay Miner. 18, 25–36 (1970).

    Article  ADS  CAS  Google Scholar 

  17. Tettenhorst, R. & Roberson, H. E. Am. Miner. 58, 73–80 (1973).

    CAS  Google Scholar 

  18. Nadeau, P. H. Clay Miner. 20, 499–514 (1985).

    Article  ADS  Google Scholar 

  19. Nadeau, P. H., Tait, J. M., McHardy, W. J. & Wilson, M. J. Clay Miner. 19, 67–76 (1984).

    Article  ADS  CAS  Google Scholar 

  20. Nadeau, P. H., Wilson, M. J., McHardy, W. J. & Tait, J. M. Mineralog. Mag. 49, 393–400 (1985).

    Article  ADS  CAS  Google Scholar 

  21. Mackinnon, I. D. R. Clays Clay Miner. 35, 74–76 (1987).

    Article  ADS  CAS  Google Scholar 

  22. Ahn, J. H. & Peacor, D. R. Clays Clay Miner. 34, 180–186 (1986).

    Article  Google Scholar 

  23. Nadeau, P. H., Wilson, M. J., McHardy, W. J. & Tait, J. M. Clays Clay Miner. 35, 77–79 (1987).

    Article  ADS  CAS  Google Scholar 

  24. Kirkpatrick, R. J., Smith, K. A., Schramm, S., Turner, G. & Yang, W.-H. a. Rev. Earth planet. Sci. 13, 29–47 (1985).

    Article  ADS  CAS  Google Scholar 

  25. Lippmaa, E., Magi, M., Samoson, A., Engelhardt, G. & Grimmer, A.-R. J. Am. chem. Soc. 102, 4889–4893 (1980).

    Article  CAS  Google Scholar 

  26. Sanz, J. & Serratosa, J. M. J. Am. chem. Soc. 106, 4790–4793 (1984).

    Article  CAS  Google Scholar 

  27. Lipsicas, M. et al. Nature 309, 604–607 (1984).

    Article  ADS  CAS  Google Scholar 

  28. Kinsey, R. A., Kirkpatrick, R. J., Hower, J., Smith, K. A. & Oldfield, E. Am. Miner. 70, 537–548 (1985).

    CAS  Google Scholar 

  29. Weiss, C. A., Altaner, S. P. & Kirkpatrick, R. J. Am. Miner. 72, 935–942 (1987).

    CAS  Google Scholar 

  30. Loewenstein, W. Am. Miner. 39, 92–96 (1954).

    CAS  Google Scholar 

  31. Norrish, K. Disc. Faraday Soc. 18, 120–134 (1954).

    Article  CAS  Google Scholar 

  32. Foster, W. R., Savins, J. G. & Waite, J. M. Clays Clay Miner. 3, 296–316 (1955).

    Article  Google Scholar 

  33. Lee, J. H. & Peacor, D. R. Clays Clay Miner. 34, 69–73 (1986).

    Article  ADS  CAS  Google Scholar 

  34. Klimentidis, R. E. & Mackinnon, I. D. R. Clays Clay Miner. 34, 155–164 (1986).

    Article  ADS  Google Scholar 

  35. Ergun, S. Phys. Rev. B1, 3371–3380 (1970).

    Article  ADS  Google Scholar 

  36. Smith, K. A., Kirkpatrick, R. J., Oldfield, E. & Henderson, D. M. Am. Miner. 68, 1206–1215 (1983).

    CAS  Google Scholar 

  37. Barron, P. F., Slade, P. & Frost, R. L. J. phys. Chem. 89, 3305–3310 (1985).

    Article  CAS  Google Scholar 

  38. Weir, A. H. & Rayner, J. H. Clays Clay Miner. 10, 173–187 (1974).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altaner, S., Weiss, C. & Kirkpatrick, R. Evidence from 29Si NMR for the structure of mixed-layer illite/smectite clay minerals . Nature 331, 699–702 (1988). https://doi.org/10.1038/331699a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/331699a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing