Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of the liganded T state of haemoglobin identifies the origin of cooperative oxygen binding

Abstract

A molecular description of haemoglobin's cooperative oxygen binding and release was founded on the X-ray crystal structures of the deoxy-T and oxy-R states1–3. Since the R state's oxygen affinity is close to that of an isolated subunit, the crucial allosteric phenomena are (1) the reduced affinity of the T state and (2) the kinetic pathway between the two quaternary structures. To investigate these phenomena directly, we have determined at high resolution (dmin = 2.1 Å) the crystal structures of two liganded T-state haemoglobins. In the liganded T-state α subunit, both the tight packing of the haem and the intersubunit contacts inhibit a conformational change between the F helix and FG corner which would allow the haem to become planar and the iron to assume symmetrical R-like coordination. In the β subunit, by contrast, we find no strain on the proximal side, but the intersubunit contacts prevent the haem from tilting about an axis parallel to the F helix which would open up the binding site to oxygen. In both subunits, ligand binding in the T state induces structural changes towards the tertiary conformation of the R state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Perutz, M. F. Nature 228, 726–739 (1970).

    Article  ADS  CAS  Google Scholar 

  2. Monod, J., Wyman, J. & Changeux, J-P. J. molec. Biol. 12, 88–118 (1965).

    Article  CAS  Google Scholar 

  3. Baldwin, J. & Chothia, C. J. molec. Biol. 129, 175–195 (1979).

    Article  CAS  Google Scholar 

  4. Haurowitz, F. Z. physiol. Chem. 254, 266–274 (1938).

    Article  CAS  Google Scholar 

  5. Anderson, L. J. molec. Biol. 79, 495–502 (1973).

    Article  CAS  Google Scholar 

  6. Derewenda, Z. et al. in Proceedings of the Haemoglobin Symposium Faculte des Sciences Universite de Bruxelles (ed. Schnek A. G. & Paul, C.) 52–67 (Edition de l'Université de Bruxelles, Bruxelles, 1983).

    Google Scholar 

  7. Brzozowski, A. et al. Nature 307, 74–76 (1984).

    Article  ADS  CAS  Google Scholar 

  8. Ward, L. B., Wishner, B. C., Lattman, E. E. & Love, N. E. J. molec. Biol. 98, 161–171 (1975).

    Article  CAS  Google Scholar 

  9. Fermi, G., Perutz, M. F., Shaanan, B. & Fourme, R. J. molec. Biol. 175, 169–171 (1984).

    Article  Google Scholar 

  10. Gelin, B. R. & Karplus, M. Proc. natn. Acad. Sci. U.S.A. 74, 801–805 (1977).

    Article  ADS  CAS  Google Scholar 

  11. Shaanan, B. J. molec. Biol. 171, 31–51 (1983).

    Article  CAS  Google Scholar 

  12. Warshel, A. & Weiss, R. J. Am. chem. Soc. 103, 446–451 (1981).

    Article  CAS  Google Scholar 

  13. Fermi, G. J. molec. Biol. 97, 225–256 (1975).

    Article  Google Scholar 

  14. Agarwal, R. C., Lifchitz, A. & Dodson, E. J. in Refinement of Protein Structures; ‘Proceedings of the Daresbury Study Weekend’ November 1980 (eds Campbell, J. & Machin, P.) 36–39 (Science and Engineering Research Council, Daresbury, 1980).

    Google Scholar 

  15. Derewenda, Z. S., Dodson, E. J., Dodson, G. G. & Brzozowski, A. M. Acta. crystallogr. A37, 407–413 (1981).

    Article  ADS  CAS  Google Scholar 

  16. Jack, A. & Levitt, M. Acta crystallogr. A34, 344–350 (1980).

    Google Scholar 

  17. Konnert, J. H. & Hendrickson, W. in Computing in Crystallography (eds Diamond, R., Ramaschan, S. & Venkatasan, K. 13.01–13.23 (Ind. Inst. Sci., Bangalore, 1980).

    Google Scholar 

  18. Gelin, B. R., Lee, A. W-M. & Karplus, M. J. molec. Biol. 171, 489–559 (1983).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liddington, R., Derewenda, Z., Dodson, G. et al. Structure of the liganded T state of haemoglobin identifies the origin of cooperative oxygen binding. Nature 331, 725–728 (1988). https://doi.org/10.1038/331725a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/331725a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing