Abstract
Insulin is produced from an inactive precursor, proinsulin, through initial endoproteolytic cleavage at sites marked by pairs of basic amino-acid residues1,2. We report here that lysates of insulin secretory granules contain two distinct Ca-dependent acidic endoproteases; one (type I) cleaving exclusively on the C-terminal side of Arg 31.Arg 32 (B-chain/C-peptide junction), the other (type II) preferentially on the C-terminal side of Lys 64.Arg 65 of proinsulin (C-peptide/A-chain junction). The Ca and pH requirements of these proteinases suggested that the type-II pro-teinase would be active in the Golgi apparatus and the secretory granule, whereas type-I activity would be compatible only with the intragranular environment. Kinetic analyses of (pro)insulin conversion intermediates in [35S]methionine-pulsed rat islets support this supposition. Our results suggest a simple mechanism whereby different dibasic sites can be cleaved in different cellular compartments. In conjunction with the regulation of the ionic composition of such compartments and the operation of post-Golgi segregation, our results also suggest how proteolytic conversion of diverse proproteins destined for different cellular sites can occur differentially and in a regulated manner.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Docherty, K. D. & Steiner, D. F. A. Rev. Physiol. 44, 625–638 (1982).
Loh, Y. P., Brownstein, M. J. & Gainer, H. A. Rev. Neurosci. 7, 189–222 (1984).
Davidson, H. W., Peshavaria, M. & Hutton, J. C. Biochem. J. 246, 279–286 (1987).
Hutton, J. C., Davidson, H. W. & Peshavaria, M. Biochem. J. 244, 457–464 (1987).
Hutton, J. C. Biochem. J. 204, 171–178 (1982).
Hutton, J. C., Penn, E. J. & Peshavaria, M. Biochem. J. 210, 297–305 (1983).
Orci, L. et al. Cell 49, 865–868 (1987).
Herman, L., Sato, T. & Hales, C. N. J. Ultrastruct. Res. 42, 298–311 (1973).
Davidson, H. W. & Hutton, J. C. Biochem. J. 245, 575–582 (1987).
Given, B. D. et al. J. clin. Invest. 76, 1398–1405 (1985).
Orci, L. Diabetologia 28, 528–546 (1985).
Hutton, J. C. & Peshavaria, M. Biochem. J. 204, 161–170 (1982).
Rhodes, C. J., Lucas, C. A., Mutkoski, R. L., Orci, L. & Halban, P. A. J. biol. Chem. 262, 10712–10717 (1987).
Formby, B., Capito, K., Egeberg, J. & Hedeskov, C. J. Am. J. Physiol 230, 441–448 (1976).
Howell, S. L. & Tyhurst, M. J. Cell Sci. 21, 415–422 (1976).
Grant, P. T., Coombs, T. L. & Frank, B. H. Biochem. J. 126, 433–440 (1972).
Kohnert, K-D., Hahn, H-J., Gylfe, E., Borg, H. & Hellman, B. Molec. cell. Endocrinol. 16, 205–220 (1979).
Hutton, J. C., Davidson, H. W., Grimaldi, K. A. & Peshavaria, M. Biochem. J. 244, 449–456 (1987).
Grimaldi, K. A., Siddle, K. & Hutton, J. C. Biochem. J. 245, 567–573 (1987).
Howell, S. L., Tyhurst, M., Duvefelt, H., Andersson, A. & Hellerström, C. Cell Tissue Res. 188, 107–118 (1978).
Nagamatsu, S., Bolaffi, J. L. & Grodsky, G. M. Endocrinology 120, 1225–1231 (1987).
Rhodes, C. J. & Halban, P. A. J. Cell Biol. 105, 145–153 (1987).
Steiner, D. F. et al. Proc. natn. Acad. Sci. U.S.A. 84, 6184–6188 (1987).
Moore, H-P., Walker, M. D., Lee, F. & Kelly, R. B. Cell 35, 531–538 (1983).
Thim, L. et al. Proc. natn. Acad. Sci. U.S.A. 83, 6766–6770 (1986).
Brennan, S. O. & Peach, R. J. FEBS Lett. 229, 167–190 (1988).
Storer, A. C. & Cornish-Bowden, A. Biochem. J. 159, 1–5 (1976).
Lacy, P. E. & Kostianovsky, M. Diabetes 16, 35–39 (1967).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Davidson, H., Rhodes, C. & Hutton, J. Intraorganellar calcium and pH control proinsulin cleavage in the pancreatic β cell via two distinct site-specific endopeptidases. Nature 333, 93–96 (1988). https://doi.org/10.1038/333093a0
Received:
Accepted:
Issue date:
DOI: https://doi.org/10.1038/333093a0
This article is cited by
-
The Ykt6–Snap29–Syx13 SNARE complex promotes crinophagy via secretory granule fusion with Lamp1 carrier vesicles
Scientific Reports (2024)
-
Secretory granule exocytosis and its amplification by cAMP in pancreatic β-cells
Diabetology International (2022)
-
Insulin granule biogenesis and exocytosis
Cellular and Molecular Life Sciences (2021)
-
SLC30A family expression in the pancreatic islets of humans and mice: cellular localization in the β-cells
Journal of Molecular Histology (2018)
-
Loss of mTORC1 signalling impairs β-cell homeostasis and insulin processing
Nature Communications (2017)