Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Interaction between high-velocity pulsar in CTB80 and an infrared emission shell

Abstract

Possessing an unusual and highly asymmetric radio structure, CTB80 has been classified as a supernova remnant (SNR) with properties resembling those of the Crab Nebula1–3. This interpretation is supported by the presence of a compact X-ray4 and radio5 source, now known to be a 39.5 ms pulsar6,7, lying near the western edge of CTB8O's bright central 'core'. During a survey of infrared emission detected by the Infrared Astronomical Satellite from shock heated dust associated with Galactic SNRs, we discovered a roughly 1° diameter supernova remnant shell centred 30' east of CTB8O's core. The pulsar's projected location inside this infrared emission shell, together with similar distance and age estimates, suggest that both the shell and pulsar were produced by the same supernova event. We propose that the interaction between the pulsar's energetic particle emission and the shell's compressed interstellar magnetic field can explain CTB8O's remarkable ratio structure, and we discuss the implications of such pulsar/SNR interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Velusamy, T. & Kundu, M. R. Astr. Astrophys. 32, 375–390 (1974).

    ADS  Google Scholar 

  2. Angerhofer, P. E., Wilson, A. S. & Mould, J. R. Astrophys. J. 236, 143–152 (1980).

    Article  ADS  CAS  Google Scholar 

  3. Angerhofer, P. E., Strom, R. G., Velusamy, T. & Kundu, M. R. Astr. Aslrophys. 94, 313–322 (1981).

    ADS  Google Scholar 

  4. Becker, R. H., Helfand, D. J. & Szymkowiak, A. E. Astrophys. J. 255, 557–563 (1982).

    Article  ADS  CAS  Google Scholar 

  5. Strom, R. G. Astrophys. J. Lett. 319, L103–L108 (1987).

    Article  ADS  CAS  Google Scholar 

  6. Kulkarni, S. R. et al. Nature 331, 50–53 (1988).

    Article  ADS  Google Scholar 

  7. Fruchter, A. S. et al. Nature 331, 53–54 (1988).

    Article  ADS  Google Scholar 

  8. Neugebauer, G. et al. Astrophys. J. Lett. 278, L1–L6 (1984); 217, 425–433 (1977).

    Article  ADS  Google Scholar 

  9. Mantovani, F., Reich, W., Salter, C. J. & Tomasi, P. Astr. Astrophys. 145, 50–58 (1985).

    ADS  Google Scholar 

  10. van den Bergh, S. Publs. astr. Soc. Pacif. 92, 768–770 (1980).

    Article  ADS  Google Scholar 

  11. Blair, W. P., Kirshner, R. P., Fesen, R. A. & Gull, T. R. Astrophys. J. 282, 161–171 (1984).

    Article  ADS  CAS  Google Scholar 

  12. Sofue, Y., Takahara, F., Hirabayashi, H., Inoue, M. & Nakai, N. Publs. astr. Soc. Japan 35, 437–445 (1983).

    ADS  Google Scholar 

  13. Strom, R. G., Angerhofer, P. E. & Dickel, J. R. Astr. Astrophys. 139, 43–49 (1984).

    ADS  Google Scholar 

  14. Velusamy, T. & Kundu, M. R. J. Astrophys. Astr. 4, 253–260 (1983).

    Article  ADS  Google Scholar 

  15. Wang, Z. R. & Seward, F. D. Astrophys. J. 285, 607–612 (1984).

    Article  ADS  Google Scholar 

  16. Cioffi, D. F., McKee, C. F. & Bertschinger, E. Astrophys. J. 334 (in the press).

  17. Cordes, J. M. Astrophys. J. 311, 183–196 (1986).

    Article  ADS  CAS  Google Scholar 

  18. Lyne, A. G., Anderson, B. & Salter, M. J. Mon. Not. R. astr. Soc. 201, 503–520 (1982).

    Article  ADS  Google Scholar 

  19. Dickel, J. R., Angerhofer, P. E., Strom, R. G. & Smith, M. D. Vistas Astr. 25, 127–135 (1981).

    Article  ADS  Google Scholar 

  20. Strom, R. G. & Blair, W. P. Astrophys. J. 149, 259–265 (1985).

    ADS  CAS  Google Scholar 

  21. Harrison, E. & Tademaru, E. Astrophys. J. 201, 447–461 (1975).

    Article  ADS  Google Scholar 

  22. Fesen, R. A. & Gull, T. R. Astrophys. Lett. 24, 197–204 (1985).

    ADS  CAS  Google Scholar 

  23. Hester, J. J. & Kulkarni, S. R. Bull. Amer. astr. Soc. 19, 1088 (1987).

    ADS  Google Scholar 

  24. Cox, D. P. & Raymond, J. C. Astrophys. J. 298, 651–659 (1985).

    Article  ADS  CAS  Google Scholar 

  25. Dwek, E. Astrophys. J. 322, 812–821 (1987).

    Article  ADS  CAS  Google Scholar 

  26. Strom, R. G., Angerhofer, P. E. & Velusamy, T. Nature 284, 38–40 (1980).

    Article  ADS  Google Scholar 

  27. Becker, R. H. & Helfand, D. J. Nature 313, 115–118 (1985).

    Article  ADS  Google Scholar 

  28. Caswell, J. L. et al. Mon. Not. R. astr. Soc. 225, 329–334 (1987).

    Article  ADS  CAS  Google Scholar 

  29. Manchester, R. N., D'Amico, N. & Tuohy, I. R. Mon. Not. R. astr. Soc. 212, 975–986 (1985).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fesen, R., Shull, J. & Saken, J. Interaction between high-velocity pulsar in CTB80 and an infrared emission shell. Nature 334, 229–231 (1988). https://doi.org/10.1038/334229a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/334229a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing