Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Numerical simulations of thermal-chemical instabilities at the core–mantle boundary

Abstract

Dynamical effects at the core–mantle boundary have so far been modelled mainly with thermal convection1,2, yet accumulating evidence3,4 supports the idea of a combined thermal and chemical boundary layer as the likely explanation of the D″ zone. Here we present numerical simulations of thermal-chemical instabilities in the D″ layer which show that strong lateral heterogeneities in the composition and density fields can be initiated and maintained dynamically if there is continuous replenishment of material from subduced slabs coming from the upper mantle. These chemical instabilities have a tendency to migrate laterally and may help to support core–mantle boundary topography with short and long wavelengths. The thermal-chemical flows produce a relatively stagnant D″ layer with strong lateral and temporal variations in basal heat flux, which gives rise to thermal core–mantle interactions5, influencing the geodynamo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hager, B. H., Clayton, R. W., Richards, M. A., Comer, R. P. & Dziewonski, A. M. Nature 313, 541–545 (1985).

    Article  ADS  Google Scholar 

  2. Zhang, S. & Yuen, D. A. Geophys. Res. Lett. 14, 899–902 (1987).

    Article  ADS  Google Scholar 

  3. Young, C. J. & Lay, T. A. Rev. Earth, planet. Sci. 15, 25–46 (1987).

    Article  ADS  CAS  Google Scholar 

  4. Creager, K. C. & Jordan, T. H. Geophys. Res. Lett. 13, 1497–1500 (1986).

    Article  ADS  Google Scholar 

  5. Bloxham, J. & Gubbins, D. Nature 325, 511–513 (1987).

    Article  ADS  Google Scholar 

  6. Morclli, A. & Dziewonski, A. M. Nature 325, 678–683 (1987).

    Article  ADS  Google Scholar 

  7. Olson, P., Schubert, G. & Anderson, C. Nature 327, 409–413 (1987).

    Article  ADS  Google Scholar 

  8. Davies, G. F. & Gurnis, M. Geophys. Res. Lett. 13, 1517–1520 (1986).

    Article  ADS  Google Scholar 

  9. Anderson, D. L. Phys. Earth planet. Inter. 45, 307–323 (1987).

    Article  ADS  CAS  Google Scholar 

  10. Brown, J. M. Geophys. Res. Lett. 13, 1509–1512 (1986).

    Article  ADS  Google Scholar 

  11. Zhang, S. & Yuen, D. A. Geophys. Res. Lett. 15, 451–454 (1988).

    Article  ADS  Google Scholar 

  12. Hofmann, A. W. & White, W. M. Earth planet. Sci. Lett. 57, 421–436 (1982).

    Article  ADS  CAS  Google Scholar 

  13. Christensen, U. R. EOS 68, 1488 (1987).

    Article  Google Scholar 

  14. Hansen, U. & Yuen, D. A. Geophys. Res. Lett. 14, 1099–1102 (1987).

    Article  ADS  Google Scholar 

  15. Hansen, U. & Ebel, A. Geophys. J. 194, 181–191 (1988).

    Article  Google Scholar 

  16. Williams, Q., Jeanloz, R., Bass, J., Svendsen, B. & Ahrens, T. J. Science 236, 181–182 (1987).

    Article  ADS  CAS  Google Scholar 

  17. McKenzie, D. P. J. Petrology 25, 713–765 (1984).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansen, U., Yuen, D. Numerical simulations of thermal-chemical instabilities at the core–mantle boundary. Nature 334, 237–240 (1988). https://doi.org/10.1038/334237a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/334237a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing