Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Deactivation of macrophages by transforming growth factor-β

Abstract

Macrophage activation—enhanced capacity to kill, in a cell that otherwise mostly scavenges—is essential for host survival from infection and contributes to containment of tumours. Both microbes and tumour cells, therefore, may be under pressure to inhibit or reverse the activation of macrophages. This reasoning led to the demonstration of macrophage deactivating factors from both microbes1,2 and tumour cells3–5. In some circumstances the host itself probably requires the ability to deactivate macrophages. Macrophages are essential to the healing of wounds and repair of tissues damaged by inflammation. Yet the cytotoxic products of the activated macrophages can damage endothelium, fibroblasts, smooth muscle and parenchymal cells (reviewed in ref. 6). Thus, after an inflammatory site has been sterilized, the impact of macrophage activation on the host might shift from benefit to detriment. These concepts led us to search for macrophage deactivating effects among polypeptide growth factors that regulate angiogenesis, fibrogenesis and other aspects of tissue repair. Among 11 such factors, two proteins that are 71% similar proved to be potent macrophage deactivators: these are transforming growth factor-β1 (TGF- β1) and TGF- β2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Confer, D. L. & Eaton, J. W. Science 217, 948–950 (1982).

    Article  ADS  CAS  Google Scholar 

  2. Ding, A. H. & Nathan, C. F. J. lmmun. 139, 1971–1977 (1987).

    CAS  Google Scholar 

  3. Szuro-Sudol, A. & Nathan, C. F. J. exp. Med. 156, 945–961 (1982).

    Article  CAS  Google Scholar 

  4. Szuro-Sudol, A., Murray, H. W. & Nathan, C. F. J. Immun. 131, 384–387 (1983).

    CAS  PubMed  Google Scholar 

  5. Tsunawaki, S. & Nathan, C. F. J. exp. Med. 164, 1319–1331 (1986).

    Article  CAS  Google Scholar 

  6. Cross, C. E. et al. Ann. int. Med. 107, 526–545 (1987).

    Article  CAS  Google Scholar 

  7. Nathan, C. F. Trans. R. Soc. trop. Med. Hyg. 77, 620–630 (1983).

    Article  CAS  Google Scholar 

  8. de la Harpe, J. & Nathan, C. F. J. immun. Meth. 78, 323–325 (1985).

    Article  CAS  Google Scholar 

  9. Murray, H. W., Spitalny, G. & Nathan, C. F. J. Immun. 134, 1619–1622 (1985).

    CAS  PubMed  Google Scholar 

  10. Shparber, M. & Nathan, C. F. Blood 68, 86a (1986).

    Google Scholar 

  11. Nathan, C. F. & Terry, W. D. Cell. Immun. 29, 295–311 (1977).

    Article  CAS  Google Scholar 

  12. Derynck, R. et al. Nature 316, 701–705 (1985).

    Article  ADS  CAS  Google Scholar 

  13. Kehrl, J. H. et al. J. exp. Med. 163, 1037–1050 (1986).

    Article  CAS  Google Scholar 

  14. Sporn, M. B., Roberts, A. B., Wakefield, L. M. & Assoian, R. K. Science 233, 532–534 (1986).

    Article  ADS  CAS  Google Scholar 

  15. Massague, J. Cell 49, 437–438 (1987).

    Article  CAS  Google Scholar 

  16. Akhurst, R. J., Fee, F. & Balmain, A. Nature 331, 363–365 (1988).

    Article  ADS  CAS  Google Scholar 

  17. Dvorak, H. F. New Engl. J. Med. 315, 1650–1659 (1986).

    Article  CAS  Google Scholar 

  18. Assoian, R. K. et al. Proc. natn. Acad. Sci. U.S.A. 84, 6020–6024 (1987).

    Article  ADS  CAS  Google Scholar 

  19. Reed, S. G. et al. J. exp. Med. 166, 1734–1746 (1987).

    Article  CAS  Google Scholar 

  20. Wahl, S. M. et al. Proc. natn. Acad. Sci. U.S.A. 84, 5788–5792 (1987).

    Article  ADS  CAS  Google Scholar 

  21. Wiseman, D. M., Polverini, P. J., Kamp, D. W. & Leibovich, S. J. J. cell Biol. 105, 163a (1987).

    Article  Google Scholar 

  22. Espevik, T. et al. J. exp. Med. 166, 571–576 (1987).

    Article  CAS  Google Scholar 

  23. Roberts, A. B. et al. Proc. natn. Acad. Sci. U.S.A. 83, 4167–4171 (1986).

    Article  ADS  CAS  Google Scholar 

  24. Assoian, R. K., Komoriya, A., Meyers, C. A., Miller, D. A. & Sporn, M. B. J. biol. Chem. 258, 7155–7160 (1983).

    CAS  PubMed  Google Scholar 

  25. Marquardt, H., Lioubin, M. N. & Ikeda, T. J. biol. Chem. 262, 12127–12131 (1987).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsunawaki, S., Sporn, M., Ding, A. et al. Deactivation of macrophages by transforming growth factor-β. Nature 334, 260–262 (1988). https://doi.org/10.1038/334260a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/334260a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing