Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Nature
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. letters
  3. article
Self-cleaving viroid and newt RNAs may only be active as dimers
Download PDF
  • Letter
  • Published: 21 July 1988

Self-cleaving viroid and newt RNAs may only be active as dimers

  • Anthony C. Forster1 nAff2,
  • Christopher Davies1,
  • Candice C. Sheldon1,
  • Alex C. Jeffries1 &
  • …
  • Robert H. Symons1 na1 

Nature volume 334, pages 265–267 (1988)Cite this article

  • 276 Accesses

  • 138 Citations

  • 6 Altmetric

  • Metrics details

Abstract

Avocado sunblotch viroid (ASBV) is a 247-nucleotide, single-stranded, circular RNA1. It is considered to replicate via a rolling-circle mechanism2–4 in which circular, monomeric plus and minus RNAs act as templates for the synthesis of longer-than-unit-length precursor RNAs. Processing of these RNAs in vivo may occur by a self-cleavage reaction, as indicated by ability of dimeric, linear plus and minus ASBV RNAs to specifically self-cleave in vitro with the excision of a monomeric RNA with 5′-hydroxyl and 2′,3′-cyclic phosphodiester termini4. A similar self-cleavage reaction has also been reported to occur in an RNA transcript containing a dimeric copy of a tandemly repeated, 330-base-pair sequence of the newt genome5. Based on comparisons with self-cleaving plant viral satellite RNAs6,7, hammerhead-shaped active structures, each containing one self-cleavage site, were proposed for the plus and minus ASBV RNAs4 and the newt RNA5, but the stability of these hammerheads has been questioned4,8. Here, more stable active structures that contain two self-cleavage sites are proposed and data supporting these models are presented.

You have full access to this article via your institution.

Download PDF

Similar content being viewed by others

RNA targeting and cleavage by the type III-Dv CRISPR effector complex

Article Open access 18 April 2024

Comprehensive evaluation of T7 promoter for enhanced yield and quality in mRNA production

Article Open access 26 April 2024

Self-inactivating, all-in-one AAV vectors for precision Cas9 genome editing via homology-directed repair in vivo

Article Open access 01 November 2021

Article PDF

References

  1. Symons, R. H. Nucleic Acids Res. 9, 6527–6537 (1981).

    Article  CAS  Google Scholar 

  2. Branch, A. D. & Robertson, H. D. Science 223, 450–455 (1984).

    Article  ADS  CAS  Google Scholar 

  3. Hutchins, C. J. et al. Pl. molec. Biol. 4, 293–304 (1985).

    Article  CAS  Google Scholar 

  4. Hutchins, C. J., Rathjen, P. D., Forster, A. C. & Symons, R. H. Nucleic Acids Res. 14, 3627–3640 (1986).

    Article  CAS  Google Scholar 

  5. Epstein, L. M. & Gall, J. G. Cell 48, 535–543 (1987).

    Article  CAS  Google Scholar 

  6. Forster, A. C. & Symons, R. H. Cell 49, 211–220 (1987).

    Article  CAS  Google Scholar 

  7. Prody, G. A., Bakos, J. T. Buzayan, J. M., Schneider, I. R. & Bruening, G. Science 231, 1577–1580 (1986).

    Article  ADS  CAS  Google Scholar 

  8. Forster, A. C. & Symons, R. H. Cell 50, 9–16 (1987).

    Article  CAS  Google Scholar 

  9. Forster, A. C., Jeffries, A. C., Sheldon, C. C. & Symons, R. H. Cold Spring Harb. Symp. quant. Biol. (in the press).

  10. Koizumi, M., Iwai, S. & Ohtsuka, E. FEBS Lett. 228, 228–230 (1988).

    Article  CAS  Google Scholar 

  11. Uhlenbeck, O. C. Nature 328, 596–600 (1987).

    Article  ADS  CAS  Google Scholar 

  12. Tinoco, I., Uhlenbeck, O. C. & Levine, M. D. Nature 230, 362–367 (1971).

    Article  ADS  CAS  Google Scholar 

  13. Freier, S. M. et al. Proc. natn Acad. Sci. U.S.A. 83, 9373–9377 (1986).

    Article  ADS  CAS  Google Scholar 

  14. Milligan, J. F., Groebe, D. R., Witherell, G. W. & Uhlenbeck, O. C. Nucleic Acids Res. 15, 8783–8798 (1987).

    Article  CAS  Google Scholar 

  15. Haseloff, J. & Symons, R. H. Nucleic Acids Res. 9, 2741–2752 (1981).

    Article  CAS  Google Scholar 

  16. Zoller, M. J. & Smith, M. Meth. Enzym. 100, 468–500 (1983).

    Article  CAS  Google Scholar 

  17. Barker, J. M., Mclnnes, J. L., Murphy, P. J. & Symons, R. H. J. virol. Meth. 10, 87–98 (1985).

    Article  CAS  Google Scholar 

  18. Sanger, F., Coulson, A. R., Barrell, B. G., Smith, A. J. H. & Roe, B. A. J. molec. Biol. 143, 161–178 (1980).

    Article  CAS  Google Scholar 

  19. Melton, D. A. et al. Nucleic Acids Res. 12, 7035–7055 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Author notes
  1. Anthony C. Forster

    Present address: Department of Biology, Kline Biology Tower, Yale University, New Haven, Connecticut, 06520, USA

  2. Robert H. Symons: To whom correspondence should be addressed.

Authors and Affiliations

  1. Department of Biochemistry, University of Adelaide, Adelaide, South Australia, 5000, Australia

    Anthony C. Forster, Christopher Davies, Candice C. Sheldon, Alex C. Jeffries & Robert H. Symons

Authors
  1. Anthony C. Forster
    View author publications

    Search author on:PubMed Google Scholar

  2. Christopher Davies
    View author publications

    Search author on:PubMed Google Scholar

  3. Candice C. Sheldon
    View author publications

    Search author on:PubMed Google Scholar

  4. Alex C. Jeffries
    View author publications

    Search author on:PubMed Google Scholar

  5. Robert H. Symons
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forster, A., Davies, C., Sheldon, C. et al. Self-cleaving viroid and newt RNAs may only be active as dimers. Nature 334, 265–267 (1988). https://doi.org/10.1038/334265a0

Download citation

  • Received: 06 April 1988

  • Accepted: 14 June 1988

  • Issue date: 21 July 1988

  • DOI: https://doi.org/10.1038/334265a0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

  • Molecular interactions of plant viral satellites

    • Uzma Badar
    • Srividhya Venkataraman
    • Kathleen Hefferon

    Virus Genes (2021)

  • A viroid-derived system to produce large amounts of recombinant RNA in Escherichia coli

    • José-Antonio Daròs
    • Verónica Aragonés
    • Teresa Cordero

    Scientific Reports (2018)

  • A review of the status of Avocado sunblotch viroid in Australia

    • Andrew D. W. Geering

    Australasian Plant Pathology (2018)

  • Self-assembly Controls Self-cleavage of HHR from ASBVd (−): a Combined SANS and Modeling Study

    • Fabrice Leclerc
    • Giuseppe Zaccai
    • Marie-Christine Maurel

    Scientific Reports (2016)

  • Viroids: an Ariadne's thread into the RNA labyrinth

    • José‐Antonio Daròs
    • Santiago F Elena
    • Ricardo Flores

    EMBO reports (2006)

You have full access to this article via your institution.

Download PDF

Advertisement

Explore content

  • Research articles
  • News
  • Opinion
  • Research Analysis
  • Careers
  • Books & Culture
  • Podcasts
  • Videos
  • Current issue
  • Browse issues
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Staff
  • About the Editors
  • Journal Information
  • Our publishing models
  • Editorial Values Statement
  • Journal Metrics
  • Awards
  • Contact
  • Editorial policies
  • History of Nature
  • Send a news tip

Publish with us

  • For Authors
  • For Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Nature (Nature)

ISSN 1476-4687 (online)

ISSN 0028-0836 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing