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Table 2 Rate and equilibrium constants for 0 2 , CO and methyl isocyanide binding to native (His-E7) and mutant (Gly-E7) sperm whale myoglobin and human a­

and {:l-chains in R-state haemoglobin at 20 oc 

o, co Methyl isocyanide 

k' k K k' k K k' k K 
Protein (xi0-6 M-1 s- 1) (s-') (xi0-6 M- 1) (x10-6 M- 1 s- 1) (s-') (xi0-6 M-1) (xiO-o M-' s-1) (s-1) (x10-6 M- 1) 

Mb(E7 His) 14±3 12±2 1.2 ± 0.3 0.51 ±0.06 0.019 ± 0.005 27±8 0.12±0.02 4.3±0.3 0.028 ± 0.005 
Mb(E7 Gly) 140 1,600 0.087 5.8 0.038 150 10 6.3 1.6 
a(E7 His) 29±5 10.1 ±4.6 2.9 ± 1.4 3.2 ± 0.4 0.0047 ± 0.005 680± 110 0.14±0.06 1.8±0.1 0.078 ± 0.033 
a(E7 Gly) 220 620 0.4 19 0.0067 2,900 0.21 0.28 0.75 
{:l(E7 His) 100±24 21±6 5.0±2.0 9.8 ± 1.9 0.0086 ± 0.0030 1,100±500 0.57 ±0.13 6.4±0.8 0.089 ± 0.023 
{:l(E7 Gly) 100 37 3.0 5.0 0.0130 390 0.67 4.2 0.16 

All reactions were carried out in 0.1 M K phosphate, pH 7.0 for myoglobin (Mb) or 0.1 M Bis-Tris, 0.1 M KCl, pH 7.0 for haemoglobin (a- and {:l-mutants). The exact 
protein concentration varied: 2-10 f!-M haem concentrations were used in stopped-flow, rapid mixing and conventional photolysis experiments, whereas 20-50 f!-M haem 
concentrations were used in laser photolysis experiments. Under these conditions liganded or R-state haemoglobin does dissociate partially into dimers; however, all 
previous work indicates that the functional properties of the a- and {:l-chains in dimers are essentially identical to those in R-state, high-affinity tetramers14

-
16 . The 

dissociation rate constants (k) were measured by stopped-flow techniques as described in Table 1. Association rate constants (k') for ligand binding toR-state haemoglobin 
were determined from partial photolysis experiments. Only time courses showing <I 0% photodissociation were considered to ensure that Hb4X3 +X-> Hb4 X4 was the 
only tetrameric reaction being measured. The methyl isocyanide and CO complexes were photolysed by a square-wave, 0.5-ms light pulse whereas the 0 2 derivatives 
were photolysed by a 500-ns dye laser pulse. The parameters for the His-E7 proteins were obtained from multiple experiments (>4), and the errors represent standard 
deviations from the mean. The constants for the E. coli wild-type proteins were averaged with those for the native proteins as systematic differences were not observed. 
Fewer experiments were done with the individual Gly-E7 derivatives, but the errors for the His-E7 parameters are assumed to apply to the mutant rate and equilibrium 
constants. The equilibrium constants (K) were calculated from the ratio of the rate constants (k'/ k). 

oxygen affinity due to a -100-fold increase in the 0 2 dissociation 
rate constant. This mutation also resulted in a five-fold increase 
in CO affinity for these two proteins, due mainly to an increase 
in the association rate constant. There were also marked 
increases (10-60-fold) in methyl isocyanide affinity for the Gly­
E7 derivatives of myoglobin and a-chains, with different kinetic 
effects in the two proteins. In myoglobin the His-E7 to Gly 
mutation caused a -100-fold increase in the association rate 
constant for isonitrile binding with little effect on the dissociation 
rate constant, whereas the same mutation in a-chains had no 
effect on the isonitrile association rate but decreased the dissoci­
ation rate about 10-fold. In contrast, the His-E7 to Gly substitu­
tion produced little or no effect on any of the ligand-binding 
properties of {3-chains in R-state haemoglobin (Table 2, last two 
rows). 

Neutron diffraction studies have demonstrated the presence 
of a hydrogen bond between His-E7 and the oxygen ligand in 
oxy-myoglobin17; no such hydrogen bond is found in CO­
myoglobin18. The high resolution X-ray crystallographic struc­
ture of oxy-haemoglobin suggests that there is a similar hydrogen 
bond in the a-subunits but not in the {3-subunits5

. Shaanan has 
pointed out in detail the similarities of the distal pockets in 
oxygen-liganded myoglobin and R-state a-subunits. He also 
concluded that {3-subunits behave more like model haem com­
pounds than either of the other proteins5

• Our experiments 
complement this structural work and clearly demonstrate 
different functional contributions of the distal histidine to ligand 
binding in these globins. In both myoglobin and a-subunits, 
His-E7 stabilizes bound 0 2 by about -1.4 kcal mol-1, presum­
ably by hydrogen bonding, and sterically hinders CO binding 
by about 1.0 kcal mol- 1

• The differences between the geometry 
of 0 2 and CO bound to haemoglobin and myoglobin have been 
discussed elsewhere 18•19 . In the case of methyl isocyanide bind­
ing, the steric hindrance by His-E7 in myoglobin is much larger 
( -2.0 kcal mol-1) than it is in a-chains ( -1.0 kcal mol-1 ), in 
agreement with Shaanan's observation of less hindered distal 
pockets in both subunits of oxy-haemoglobin. The insensitivity 
of oxygen affinity to the His-E7 to Gly substitution in R-state 
{3-chains is also consistent with earlier calculations indicating 
unlimited freedom of rotation of bound 0 2 and the apparent 
lack of a hydrogen bond with the distal histidine in the {3-subunit 
of oxy-haemoglobin5

• 
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Corrigenda 

Evidence from cathodoluminescence for non­
volcanic origin of shocked quartz at the 
Cretaceous/Tertiary boundary 

Michael R. Owen & Mark H. Anders 
Nature 334, 145-147 (1988). 
WE regret that we failed to acknowledge that sample material 
was provided by Glen A. Izett, US Geological Survey. 

Structure of antibody hypervariable loops 
reproduced by a conformational search algorithm 

Robert E. Bruccoleri, Edgar Haber & Jifi Novotny 
Nature 335, 564-568 (1988). 
THE reference to the crystallographic structure of the mono­
clonal antibody Fab fragment HyHEL-5 was inadvertedly omit­
ted. The reference reads as follows: S. Sheriff et al., Proc. natn. 
Acad. Sci. U.S.A. 84, 8075-8079; 1987. Also, in the legend to 
Fig. 3, the amino-acid residue H 100 was incorrectly specified 
as aspartate. This residue is, in fact, an asparagine. 
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