Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Regulation of glucose transporter messenger RNA in insulin-deficient states

Abstract

RECENT studies have indicated that a family of structurally related proteins with distinct but overlapping tissue distributions are responsible for facilitative glucose transport in mammalian tissues1—13. Insulin primarily stimulates glucose transport by inducing the redistribution of a unique glucose transporter protein from an intracellular pool to the plasma membrane3. This 509-amino-acid integral membrane protein, termed GLUT-4 (ref. 2), is the main insulin-responsive glucose transporter in adipose and muscle tissues1—3. We have observed a dramatic decrease (tenfold) in the steady-state levels of GLUT-4 messenger RNA in adipose tissue from fasted rats or rats made insulin deficient with streptozotocin. Insulin treatment of the streptozotocin-diabetic rats or refeeding the fasted animals causes a rapid recovery of the GLUT-4 mRNA to levels significantly above those observed in untreated control animals. By contrast, the levels of the erythrocyte/HepG2/rat brain-type glucose transporter mRNA remain essentially unchanged under these conditions. These data suggest that the in vivo expression of GLUT-4 mRNA in rat adipose tissue is regulated by insulin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. James, D. E., Strube, M. & Mueckler, M. Nature 338, 83–87 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Fukumoto, H. et al. J. biol. Chem. 264, 7776–7779 (1989).

    CAS  PubMed  Google Scholar 

  3. James, D. E., Brown, R., Navarro, J. & Pilch, P. F. Nature 333, 183–185 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Taylor, L. P. & Holman, G. D. Biochim. biophys. Acta 642, 325–335 (1981).

    Article  CAS  PubMed  Google Scholar 

  5. Axelrod, J. D. & Pilch, P. F. Biochemistry 22, 2222–2227 (1983).

    Article  CAS  PubMed  Google Scholar 

  6. Ciaraldi, T. P., Horuk, R. & Matthaei, S. Biochem. J. 240, 115–123 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Horuk, R. et al. J. biol. Chem. 261, 1823–1828 (1986).

    CAS  PubMed  Google Scholar 

  8. Mueckler, M. et al. Science 229, 941–945 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Birnbaum, M. J., Haspel, H. C. & Rosen, O. M. Proc. natn. Acad. Sci. U.S.A. 83, 5784–5788 (1986).

    Article  ADS  CAS  Google Scholar 

  10. Kayano, T. et al. J. biol. Chem. 263, 15245–15248 (1988).

    CAS  PubMed  Google Scholar 

  11. Fukumoto, H. et al. Proc. natn. Acad. Sci. U.S.A. 85, 5434–5438 (1988).

    Article  ADS  CAS  Google Scholar 

  12. Fukumoto, H., Seino, S., Imura, H., Seino, Y. & Bell, G. I. Diabetes 37, 657–661 (1988).

    Article  CAS  PubMed  Google Scholar 

  13. Thorens, B., Sarkar, H. K., Kaback, H. R. & Lodish, H. F. Cell 55, 281–290 (1988).

    Article  CAS  PubMed  Google Scholar 

  14. Karnieli, E., Hissin, D. J., Simpson, I. A., Salans, L. B. & Cushman, S. W. J. clin. Invest. 68, 811–814 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kahn, B. B., Simpson, I. A. & Cushman, S. W. J. clin. Invest. 82, 691–699 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kahn, B. B. & Cushman, S. W. J. biol. Chem. 262, 5118–5124 (1987).

    CAS  PubMed  Google Scholar 

  17. Berger et al. Nature 340, 70–72 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Kahn, B. B., Cushman, S. W. & Flier, J. S. J. clin. Invest. 83, 199–204 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Flier, J. S., Mueckler, M. M., Usher, P. & Lodish, H. F. Science 235, 1492–1495 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Birnbaum, M. J., Haspel, H. C. & Rosen, O. M. Science 235, 1495–1498 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Hiraki, Y., Rosen, O. M. & Birnbaum, M. J. J. biol. Chem. 263, 13655–13662 (1988).

    CAS  PubMed  Google Scholar 

  22. Rollins, B. J., Morrison, E. D., Usher, P. & Flier, J. S. J. biol. Chem. 263, 16523–16526 (1988).

    CAS  PubMed  Google Scholar 

  23. Walker, P. S., Donovan, J. A., Van Ness, B. G., Fellows, R. E. & Pessin, J. E. J. biol. Chem. 263, 15594–15601 (1988).

    CAS  PubMed  Google Scholar 

  24. Davis, L. G., Dibner, M. D. & Battey, J. F. Basic Methods in Molecular Biology (Elsevier, New York, 1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sivitz, W., DeSautel, S., Kayano, T. et al. Regulation of glucose transporter messenger RNA in insulin-deficient states. Nature 340, 72–74 (1989). https://doi.org/10.1038/340072a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/340072a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing