Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Control of transmembrane lipid asymmetry in chromaffin granules by an ATP-dependent protein

Abstract

THE Ca2+-dependent binding of annexin proteins to secretory granule membranes seems to be involved in the early stage of exocytosis1—3. Binding studies have shown that these proteins have a specificity for phosphatidylserine (PtdS) interfaces4,5. Further-more, aminolipids are necessary for contact and fusion between lipid vesicles6 or between liposomes and chromaffin granules7. Thus, PtdS must be present on the granule outer (cytoplasmic) monolayer. We report here that chromaffin granules possess a mechanism to maintain PtdS orientation, comparable to the ATP-dependent aminophospholipid translocase from human erythrocytes8-14. The translocase, in granules, selectively transports PtdS from the luminal to the cytoplasmic monolayer, provided the incubation medium contains ATP. As this protein shares several properties with the granule vanadate-sensitive ATPase II15,16, we infer that this ATPase, of relative molecular mass 115,000, is the protein responsible for aminophospholipid translocation. This is the first evidence for an ATP-dependent specific phospholipid 'flippase' in intracellular organelles.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sudhof, T. C., Walker, J. H. & Obrocki, J. EMBO J. 1, 1167–1170 (1982).

    Article  CAS  Google Scholar 

  2. Drust, D. S. & Creutz, C. E. Nature 331, 88–91 (1988).

    Article  ADS  CAS  Google Scholar 

  3. Odenwald, W. F. & Morris, S. J. Biochem. biophys. Res. Commun. 112, 147–154 (1983).

    Article  CAS  Google Scholar 

  4. Geisow, M. J. & Walker, J. H. Trends biochem. Sci. 11, 420–423 (1986).

    Article  CAS  Google Scholar 

  5. Klee, C. Biochemistry 27, 6645–6653 (1988).

    Article  CAS  Google Scholar 

  6. Papahadjopoulos, D., Vail, W. J., Pangborn, W. A. & Poste, G. Biochim. biophys. Acta 448, 265–283 (1976).

    Article  CAS  Google Scholar 

  7. Nayar, R., Hope, M. J. & Cullis, P. R. Biochemistry 21, 4583–4589 (1982).

    Article  CAS  Google Scholar 

  8. Seigneuret, M. & Devaux, P. F. Proc. natn. Acad. Sci. U.S.A. 81, 3751–3755 (1984).

    Article  ADS  CAS  Google Scholar 

  9. Daleke, D. L. & Huestis, W. H. Biochemistry 24, 5406–5416 (1985).

    Article  CAS  Google Scholar 

  10. Zachowski, A., Favre, E., Cribier, S., Hervé, P. & Devaux, P. F. Biochemistry 25, 2585–2590 (1986).

    Article  CAS  Google Scholar 

  11. Tilley, L., Cribier, S., Roelofsen, B., Op den Kamp, J. A. F. & van Deenen, L. L. M. FEBS Lett. 194, 21–27 (1986).

    Article  CAS  Google Scholar 

  12. Connor, J. & Schroit A. J. Biochemistry 27, 848–851 (1988).

    Article  CAS  Google Scholar 

  13. Devaux, P. F. FEBS Lett. 234, 8–12 (1988).

    Article  CAS  Google Scholar 

  14. Morrot, G., Hervé, P., Zachowski, A., Fellmann, P. & Devaux, P. F. Biochemistry 28, 3456–3462 (1989).

    Article  CAS  Google Scholar 

  15. Apps, D. K. & Percy, J. M. Ann. N.Y. Acad. Sci. 493, 178–187 (1987).

    Article  ADS  CAS  Google Scholar 

  16. Moriyama, Y. & Nelson. N. J. biol. Chem. 263, 8521–8527 (1988).

    CAS  PubMed  Google Scholar 

  17. Bretscher, M. Nature 236, 11–12 (1972).

    Article  ADS  CAS  Google Scholar 

  18. Op den Kamp, J. A. F. A. Rev. Biochem. 48, 47–71 (1979).

    Article  CAS  Google Scholar 

  19. Sune, A., Bette-Bobillo, P., Bienvenue, A., Fellmann, P. & Devaux, P. F. Biochemistry 26, 2972–2978 (1987).

    Article  CAS  Google Scholar 

  20. Sune, A., Vidal, M., Morin, P., Sainte-Marie, J. & Bienvenue, A. Biochim. biophys. Acta 946, 315–327 (1988).

    Article  CAS  Google Scholar 

  21. Martin, O. C. & Pagano, R. E. J. biol. Chem. 262, 5890–5898 (1987).

    CAS  PubMed  Google Scholar 

  22. Zachowski, A., Fellmann, P. & Devaux, P. F. Biochim. biophys. Acta 815, 510–514 (1985).

    Article  CAS  Google Scholar 

  23. Sarkadi, B., Szasz, I. & Gardos, G. Biochim. biophys. Acta 598, 326–338 (1980).

    Article  CAS  Google Scholar 

  24. Scherman, D., Soumarmon, A. & Henry, J. P. Biochimie 68, 1303–1309 (1986).

    Article  CAS  Google Scholar 

  25. Knight, D. E. & Baker, P. F. J. Membrane Biol. 68, 107–140 (1982).

    Article  CAS  Google Scholar 

  26. Diebler, M. F. & Lazereg, S. J. Neurochem. 44, 1633–1641 (1985).

    Article  CAS  Google Scholar 

  27. Xie, X. S., Stone, D. K. & Racker, E. J. biol. Chem. 259, 11676–11678 (1984).

    CAS  PubMed  Google Scholar 

  28. Bishop, W. R. & Bell, R. M. Cell 42, 51–60 (1985).

    Article  CAS  Google Scholar 

  29. Carty, S. E., Johnson, R. G. & Scarpa, A. Analyt. Biochem. 106, 438–445 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zachowski, A., Henry, JP. & Devaux, P. Control of transmembrane lipid asymmetry in chromaffin granules by an ATP-dependent protein. Nature 340, 75–76 (1989). https://doi.org/10.1038/340075a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/340075a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing