Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Testing nuclear theory using the 0.5 ms pulsar

Abstract

IF THE recently reported 0.5-ms optical pulsar in the remnant of SN1987A1,2 is indeed a rotating neutron star, then its very existence may be used to rule out many previously viable equations of state of nuclear matter (ref. 3). We demonstrated3 that it may be impossible to spin up an initially non-rotating neutron star to a spin period Prot0.5ms for any currently proposed nuclear equation of state. Here, we reverse the argument: a uniformly rotating neutron star with Prot 0.5ms may be unable to spin down to become a slowly rotating neutron star, if any of the proposed equations of state is correct. Assuming that the neutron star in SN1987A is 'typical' and does not collapse to a black hole as it spins down to Prot» 0.5 ms, then its existence may actually invalidate all previously viable nuclear equations of state. We propose an approximate, analytical test that can be used to identify untenable equations of state in the future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Middleditch, J. et al. IAU Circ. No. 4735 (1989).

  2. Kristian, J. et al. Nature 338, 234–236 (1989).

    Article  ADS  Google Scholar 

  3. Shapiro, S. L., Teukolsky, S. A. & Wasserman, I. Astrophys. J. 272, 702–707 (1983).

    Article  ADS  Google Scholar 

  4. Butterworth, E. M. & Ipser, J. R. Astrophys. J. 204, 200–223 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  5. Butterworth, E. M. Astrophys. J. 204, 561–572 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  6. Butterworth, E. M. Astrophys. J. 231, 219–223 (1979).

    Article  ADS  Google Scholar 

  7. Friedman, J. L., Ipser, J. R. & Parker, L. Astrophys. J. 304, 115–139 (1986).

    Article  ADS  CAS  Google Scholar 

  8. Lightman, A. P. et al. Problem Book in Relativity and Gravitation (Princeton University Press, 1975).

    MATH  Google Scholar 

  9. Hartle, J. B. & Thorne, K. S. Astrophys. J. 153, 807–834 (1968).

    Article  ADS  Google Scholar 

  10. Chandrasekhar, S. Ellipsoidal Figures of Equilibrium (Dover, New York, 1987).

    MATH  Google Scholar 

  11. Bondi, H. in Lectures on General Relativity (eds S. Deser & Ford, K. W.) 379–459 (Prentice Hall, Englewood Cliffs, 1964).

    Google Scholar 

  12. Weinberg, S. Gravitation and Cosmology 330–335 (Wiley, New York, 1972).

    Google Scholar 

  13. Baym, G. & Pethick, C. J. A. Rev. Astr. Astrophys. 17, 415–443 (1979).

    Article  ADS  CAS  Google Scholar 

  14. Shapiro, S. L. & Teukolsky, S. A. Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects (Wiley, New York, 1983).

    Book  Google Scholar 

  15. Arnett, W. D. Astrophys. J. 319, 136–142 (1987).

    Article  ADS  CAS  Google Scholar 

  16. Maxwell, O. & Weise, W. Phys. Lett. 62B, 159–161 (1976).

    Article  ADS  CAS  Google Scholar 

  17. Fechner, W. B. & Joss, P. C. Nature 274, 347–348 (1978).

    Article  ADS  Google Scholar 

  18. Friedman, J. L. & Schutz, B. F. Astrophys. J. 222, 281–296 (1978).

    Article  ADS  Google Scholar 

  19. Wang, Q. et al. Nature 338, 319–320 (1989).

    Article  ADS  Google Scholar 

  20. Pandharipande, V. R. & Smith, R. A. Phys. Lett. B59, 15–18 (1975).

    Article  Google Scholar 

  21. Pandharipande, V. R. & Smith, R. A. Nucl. Phys. A237, 507–532 (1975).

    Article  Google Scholar 

  22. Bethe, H. A. & Johnson, M. B. Nucl. Phys. A230, 1–58 (1974).

    Article  Google Scholar 

  23. Friedman, B. & Pandharipande, V. R. Nucl. Phys. A361, 502–520 (1981).

    Article  Google Scholar 

  24. Pandharipande, V. R. Nucl. Phys. A178, 123–144 (1971).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shapiro, S., Teukolsky, S. & Wasserman, I. Testing nuclear theory using the 0.5 ms pulsar. Nature 340, 451–452 (1989). https://doi.org/10.1038/340451a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/340451a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing