Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Fitness reduction associated with the deletion of a satellite DNA array

Abstract

SATELLITE DNA refers to a class of tandem repeats of very simple sequences, usually A + T or G + C rich, which form a satellite band on a CsCl gradient. Their ubiquity and abundance in higher eukaryotes have led to speculation about their functions1–3 It has often been suggested that satellite DNAs are merely innocuous genetic parasites or comprise 'junk' DNA2–4. The recent identification of an array of satellite DNA repeats as the Responder (Rsp) locus of Drosophila melanogaster provides a new perspective on these elements5. Rsp is in the centromeric heterochromatin of most natural second chromosomes6. It causes spermatids bearing it to degenerate after meiosis when the homologous second chromosome is a Segregation Distorter (SD) chromosome. That is, SD targets the Rsp locus on its homologue for destruction during spermatogenesis, causing meiotic drive. Why then does the Rsp locus, a large array of satellite repeats, exist at all? One plausible explanation is that its existence contributes to the fitness of flies bearing it, compensating for the loss through meiotic drive. A direct demonstration of the usefulness of any family of satellite DNA is to compare the fitnesses of individuals with and without it. Previously, such an experiment has been difficult because the absence of a characteristic phenotype has precluded an efficient selection of deletion mutations. In this report we attempt to demonstrate a fitness reduction associated with the deletion of Rsp satellite DNA as well as the life stages at which such a reduction occurs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Brutlag, D. L. A. Rev. Genet 14, 121–144 (1980).

    Article  CAS  Google Scholar 

  2. Miklos, G. L. G. in Molecular Evolutionary Genetics (ed. Mclntyre, R. J.) 241–322 (Plenum, New York, 1985).

    Book  Google Scholar 

  3. Ohno, S. in Evolution of Genetic Systems (ed. H. H. Smith) 366–370. (Gordon and Breach, New York, 1970).

    Google Scholar 

  4. Smith, G. P. Science 191, 528–535 (1976).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Wu, C.-l., Lyttle, T. W., Wu, M. L. & Lin, G. F. Cell 54, 179–189 (1988).

    Article  CAS  PubMed  Google Scholar 

  6. Ganetzky, B. Genetics 86, 321–355 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Pimpinelli, S. & Dimitri, P. Genetics 121, 765–772 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Crow, J. F. Scient. Am. 240, 134–146 (1979).

    Article  CAS  Google Scholar 

  9. Charlesworth, B. & Hartl, D. L. Genetics 89, 171–192 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Hiraizumi, Y. & Thomas, A. M. Genetics 106, 279–292 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Temin, R. G. & Marthas, M. Genetics 107, 375–393 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Crow, J. F. & Kimura, M. An Introduction to Population Genetics Theory (Burgess, Minneapolis, 1970).

    MATH  Google Scholar 

  13. Wu, C.-l. Genetics 105(3), 651–662 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lefevre, G. & Jonsson, U. B. Genetics 47, 1719–1736 (1962).

    PubMed  PubMed Central  Google Scholar 

  15. Hartl, D. L., Sandier, L. & Crow, J. F. Proc. natn. Acad. Sci. U.S.A. 58, 2240–2245 (1968).

    Article  ADS  Google Scholar 

  16. Yamamoto, M., & Miklos, G. L. C. Chromosoma 66, 71–98 (1978).

    Article  CAS  PubMed  Google Scholar 

  17. Brittnacher, J. G. & Ganetzky, B. Genetics 121, 739–750 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. John, B. & Miklos, G. The Eukaryote Genome in Development and Evolution. (Allen & Unwin, London, 1989).

    Google Scholar 

  19. Radio, M. A., Lundgren, K. & Hamkalo, B. A. Cell 50, 1101–1108 (1988).

    Google Scholar 

  20. Hsieh, C. H., & Griffith, J. D. Cell 52, 535–544 (1988).

    Article  CAS  PubMed  Google Scholar 

  21. Tokuyasu, K. T., Peacock, W. J. & Hardy, R. W. Z. Zellforsch. Mikrusk. Anal 124, 479–506 (1972).

    Article  CAS  Google Scholar 

  22. Wu, C.-l. & Beckenbach, A. T. Genetics 105, 71–86 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Nur, U., Werren, J. H., Eickbush, D., Burke, W. & Eickbush, T. Science 290, 512–514 (1988).

    Article  ADS  Google Scholar 

  24. Dorn, R., Heymann, S., Lindigkeit, R. & Reuter, G. Chromosoma 93, 398–403 (1986).

    Article  CAS  Google Scholar 

  25. James, T. C. & Elgin, S. C. R. Molec. cell. Biol. 6, 3862–3872 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Strauss, F. & Varshavsky, A. Cell 37, 889–901 (1984).

    Article  CAS  PubMed  Google Scholar 

  27. Haldane, J. B. S. J. Genet. 54, 294–296 (1956).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, CI., True, J. & Johnson, N. Fitness reduction associated with the deletion of a satellite DNA array. Nature 341, 248–251 (1989). https://doi.org/10.1038/341248a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/341248a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing