Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Functional replacement of a protein-induced bend in a DNA recombination site

Abstract

IN recent years the capacity of proteins to bend DNA by binding to specific sites has become a widely appreciated phenomenon1–7. In many cases, the protein-DNA interaction is known to be functionally significant because destruction of the DNA site or the protein itself results in an altered phenotype. An important question to be answered in these cases is whether bending of DNA is important per se or is merely a consequence of the way a particular protein binds to DNA. Here we report direct evidence from the bacteriophage lambda integration system that a bend introduced by a protein is intrinsically important. We find that a binding site for a specific recombination protein known to bend DNA can be successfully replaced by two other modules that also bend DNA; related modules that fail to bend DNA are ineffective.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wu, H.-M. & Crothers, D. M. Nature 308, 509–513 (1984).

    Article  ADS  CAS  Google Scholar 

  2. Zahn, K. & Blattner, F. R. EMBO J. 4, 3605–3616 (1985).

    Article  CAS  Google Scholar 

  3. Mukherjee, S., Patel, I. & Bastia, D. Cell 43, 189–197 (1985).

    Article  CAS  Google Scholar 

  4. Shuey, D. J. & Parker, C. S. Nature 323, 459–461 (1986).

    Article  ADS  CAS  Google Scholar 

  5. Hatfull, G. F., Noble, S. M. & Grindley, N. D. F. Cell 49, 103–110 (1987).

    Article  CAS  Google Scholar 

  6. Vignais, M.-L. & Sentenac, A. J. biol. Chem. 264, 8463–8466 (1989).

    CAS  PubMed  Google Scholar 

  7. Zwieb, C., Kim, J., & Adhya, S. Genes Dev. 3, 606–611 (1989).

    Article  CAS  Google Scholar 

  8. Craig, N. L. A. Rev. Genet. 22, 77–105 (1988).

    Article  CAS  Google Scholar 

  9. Gardner, J. F. & Nash, H. A. J. molec. Biol. 191, 181–189 (1986).

    Article  CAS  Google Scholar 

  10. Robertson, C. A. & Nash, H. A. J. biol. Chem. 263, 3554–3557 (1988).

    CAS  Google Scholar 

  11. Thompson, J. F. & Landy, A. Nucleic Acids Res. 16, 9687–9705 (1988).

    Article  CAS  Google Scholar 

  12. Echols, H. Science 233, 1050–1056 (1986).

    Article  ADS  CAS  Google Scholar 

  13. Richet, E., Abcarian, P. & Nash, H. A. Cell 46, 1011–1021 (1986).

    Article  CAS  Google Scholar 

  14. Kosturko, L. D., Daub, E. & Murialdo, H. Nucleic Acids Res. 17, 317–334 (1989).

    Article  CAS  Google Scholar 

  15. Liu-Johnson, H.-N., Gartenberg, M. R. & Crothers, D. M. Cell 47, 995–1005 (1986).

    Article  CAS  Google Scholar 

  16. Koo, H.-S. & Crothers, D. M. Proc. natn. Acad. Sci. U.S.A. 85, 1763–1767 (1988).

    Article  ADS  CAS  Google Scholar 

  17. Gamas, P., Chandler, M. G., Prentki, P. & Galas, D. J. J. molec. Biol. 195, 261–272 (1987).

    Article  CAS  Google Scholar 

  18. Hübner, P., Haffter, P., lida, S. & Arber, W. J. molec. Biol. 205, 493–500 (1989).

    Article  Google Scholar 

  19. de Vargas, L. M., Kim, S. & Landy, A. Science 244, 1457–1461 (1989).

    Article  ADS  Google Scholar 

  20. Stenzel, T. T., Patel, P. & Bastia, D. Cell 49, 709–717 (1987).

    Article  CAS  Google Scholar 

  21. Taylor, L. A. & Rose, R. E. Nucleic Acids Res. 16, 358 (1988).

    Article  CAS  Google Scholar 

  22. Kitts, P. A. & Nash, H. A. J. molec. Biol. 204, 95–107 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goodman, S., Nash, H. Functional replacement of a protein-induced bend in a DNA recombination site. Nature 341, 251–254 (1989). https://doi.org/10.1038/341251a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/341251a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing