Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Induction of the Escherichia coli lactose operon selectively increases repair of its transcribed DNA strand

Abstract

NUCLEOTIDE excision repair helps to ameliorate the lethal and mutagenic consequences of DNA damage by removing helix-distorting lesions from cellular genomes1. We have pre-viously analysed the removal of ultraviolet-induced cyclobutane pyrimidine dimers from specific DNA sequences in mammalian cells and demonstrated that transcriptionally active genes are preferentially repaired2–4. Additionally, we found that in rodent and human cells only the transcribed strand of the dihydrofolate reductase gene is selectively repaired5. Transcription is blocked by pyrimidine dimers in template DNA6 and the selective removal of these lesions seems to be important for cell survival after irradiation with ultraviolet light2,7,8. To determine whether this feature of repair is common to prokaryotes and eukaryotes and better to understand its mechanism, we have investigated repair in the two separate DNA strands of the lactose operon of ultraviolet-irradiated Escherichia coli. We find a dramatic difference in the repair of the two strands only when transcription is induced. Most dimers are removed from the transcribed strand of the induced operon within five minutes of irradiation. In the non-transcribed strand, repair is significantly slower and resembles that found in both strands of the uninduced operon. Thus there seems to be a mechanism that couples nucleotide excision repair and transcription.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Friedberg, E. C. in DNA Repair (Freeman, San Francisco, 1985).

    Google Scholar 

  2. Bohr, V. A., Smith, C. A., Okumoto, D. S. & Hanawalt, P. C. Cell 40, 359–369 (1985).

    Article  CAS  Google Scholar 

  3. Madhani, H. D., Bohr, V. A. & Hanawalt, P. C. Cell 45, 417–423 (1986).

    Article  CAS  Google Scholar 

  4. Mellon, I., Bohr, V. A., Smith, C. A. & Hanawalt, P. C. Proc. natn. Acad. Sci. U.S.A. 83, 8878–8882 (1986).

    Article  ADS  CAS  Google Scholar 

  5. Mellon, I., Spivak, G. & Hanawalt, P. C. Cell 51, 241–249 (1988).

    Article  Google Scholar 

  6. Sauerbier, W. & Hercules, K. A. Rev. Genet. 12, 329–363 (1978).

    Article  CAS  Google Scholar 

  7. Mayne, L. V. & Lehmann, A. R. Cancer Res. 42, 1493–1498 (1982).

    Google Scholar 

  8. Mayne, L. V., Mullenders, L. H. F. & van Zeeland, A. A. in Mechanisms and Consequences of DNA Damage Processing (eds Friedberg, E. C. & Hanawalt, P. C.) 349–353 (Liss, New York, 1988).

    Google Scholar 

  9. The Lactose Operon (Cold Spring Harbor Laboratory, New York, 1970).

  10. Bohr, V. A. & Okumoto, D. S. in DNA Repair: A Laboratory Manual of Research Procedures (eds Friedberg, E. C. & Hanawalt, P. C.) 3, 347–366 (Dekker, New York, 1988).

    Google Scholar 

  11. Sancar, A. & Rupp, W. D. Cell 33, 249–260 (1983).

    Article  CAS  Google Scholar 

  12. Miller, J. H. in Experiments in Molecular Genetics 352–355 (Cold Spring Harbor Laboratory, Cold Spring Harbor, 1972).

    Google Scholar 

  13. Bockrath, R. C. & Palmer, J. E. Molec. gen. Genet 156, 133–140 (1977).

    Article  CAS  Google Scholar 

  14. Engstrom, J., Larsen, S., Rogers, S. & Bockrath, R. C. Mutation Res. 132, 143–152 (1984).

    Article  CAS  Google Scholar 

  15. Bockrath, R. C., Barlow, A. & Engstrom, J. Mutation Res. 183, 241–247 (1987).

    Article  CAS  Google Scholar 

  16. Reed, J. & Hutchinson, F. Molec. gen. Genet. 208, 446–449 (1987).

    Article  CAS  Google Scholar 

  17. Vrieling, H. et al. Molec. cell. Biol. 9, 1277–1283 (1989).

    Article  CAS  Google Scholar 

  18. Herman, R. K. & Dworkin, N. B. J. Bact. 106, 543–550 (1971).

    CAS  PubMed  Google Scholar 

  19. Savić, D. J. & Kanazir, D. T. Molec. gen. Genet. 118, 45–50 (1972).

    Article  Google Scholar 

  20. Shi, Y. B., Gamper, H. & Hearst, J. E. Nucleic Acids Res. 15, 6843–6854 (1987).

    Article  CAS  Google Scholar 

  21. Fornace, A. J., Jr. Alamo, I., Jr, & Hollander, M. C. Proc. natn. Acad. Sci. U.S.A. 85, 8800–8804 (1988).

    Article  ADS  CAS  Google Scholar 

  22. Hoeijmakers, J. H. J. et al. in Mechanisms and Consequences of DNA Damage Processing (eds Friedberg, E. C. & Hanawalt, P. C.) 281–287 (Liss, New York, 1988).

    Google Scholar 

  23. Thompson, L. H., Weber, C. A. & Carrano, A. V. in Mechanisms and Consequences of DNA Damage Processing (eds Friedberg, E. C. & Hanawalt, P. C.) 289–293 (Liss, New York, 1988).

    Google Scholar 

  24. Sancar, A. & Sancar, G. W. A. Rev. Biochem. 57, 29–67 (1988).

    Article  CAS  Google Scholar 

  25. Grossman, L., Caron, P. R., Mazur, S. J. & Oh, E. Y. Fedn Proc. 2, 2696–2701 (1988).

    CAS  Google Scholar 

  26. Sancar, A., Franklin, K. A. & Sancar, G. B. Proc. natn. Acad. Sci. U.S.A. 81, 7397–7401 (1984).

    Article  ADS  CAS  Google Scholar 

  27. Bilofsky, H. S. et al. Nucleic Acids Res. 14, 1–4 (1986).

    Article  CAS  Google Scholar 

  28. Ganesan, A. K. & Spivak, G. in DNA Repair: A Laboratory Manual of Research Procedures (eds Friedberg, E. C. & Hanawalt, P. C.) 3, 295–310 (Dekker, New York, 1988).

    Google Scholar 

  29. Smith, C. A., Cooper, P. K. & Hanawalt, P. C. in DNA Repair: A Laboratory Manual of Research Procedures (eds Friedberg, E. C. & Hanawalt, P. C.) 1B, 289–305 (Dekker, New York, 1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mellon, I., Hanawalt, P. Induction of the Escherichia coli lactose operon selectively increases repair of its transcribed DNA strand. Nature 342, 95–98 (1989). https://doi.org/10.1038/342095a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/342095a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing