Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Substantial increase of protein stability by multiple disulphide bonds

Abstract

DISULPHIDE bonds can significantly stabilize the native structures of proteins1–3. The effect is presumed to be due mainly to a decrease in the configurational chain entropy of the unfolded polypeptide4–7. In phage T4 lysozyme, a disulphide-free enzyme, engineered disulphide mutants that crosslink residues 3–97, 9–164 and 21–142 are significantly more stable than the wild-type protein8–11. To investigate the effect of multiple-disulphide bonds on protein stability, mutants were constructed in which two or three stabilizing disulphide bridges were combined in the same protein. Reversible thermal denaturation shows that the increase in melting temperature resulting from the individual disulphide bonds is approximately additive. The triple-disulphide variant unfolds at a temperature 23.4 °C higher than wild-type lysozyme. The results demonstrate that a combination of disulphide bonds, each of which contributes to stability, can achieve substantial overall improvement in the stability of a protein.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Creighton, T. E. BioEssays 8, 57–63 (1988).

    Article  CAS  Google Scholar 

  2. Thornton, J. M. J. molec. Biol. 151, 261–287 (1981).

    Article  CAS  Google Scholar 

  3. Pace, C. N., Grimsley, G. R., Thomson, J. A. & Barnett, B. J. J. biol. Chem. 263, 11820–11825 (1988).

    CAS  PubMed  Google Scholar 

  4. Schellman, J. A. C. R. Trav. Lab. Carlsberg Ser. Chim. 29, 230–259 (1955).

    CAS  Google Scholar 

  5. Flory, P. J. J. Am. Chem. Soc. 78, 5222–5235 (1956).

    Article  CAS  Google Scholar 

  6. Poland, D. C. & Scheraga, H. A. Biopolymers 3, 379–399 (1965).

    Article  CAS  Google Scholar 

  7. Chan, H. S. & Dill, K. A. J. chem. Phys. 90, 492–509 (1988).

    Article  ADS  Google Scholar 

  8. Perry, L. J. & Wetzel, R. Science 226, 555–557 (1984).

    Article  ADS  CAS  Google Scholar 

  9. Wetzel, R., Perry, L. J., Baase, W. A. & Becktel, W. J. Proc. natn. Acad. Sci. U.S.A. 85, 401–405 (1988).

    Article  ADS  CAS  Google Scholar 

  10. Matsumura, M., Becktel, W. J. & Matthews, B. W. Nature 334, 406–410 (1988).

    Article  ADS  CAS  Google Scholar 

  11. Matsumura, M., Becktel, W. J., Levitt, M. & Matthews, B. W. Proc. natn. Acad. Sci. U.S.A. 86, 6562–6566 (1989).

    Article  ADS  CAS  Google Scholar 

  12. Perry, L. J. & Wetzel, R. Biochemistry 25, 733–739 (1986).

    Article  CAS  Google Scholar 

  13. Matsumura, M., & Matthews, B. W. Science 243, 792–794 (1989).

    Article  ADS  CAS  Google Scholar 

  14. Lin, S. H., Konishi, Y., Denton, M. E. & Scheraga, H. A. Biochemistry 23, 5504–5512 (1984).

    Article  CAS  Google Scholar 

  15. Johnson, R. E., Adams, P. & Rupley, J. A. Biochemistry 17, 1479–1484 (1978).

    Article  CAS  Google Scholar 

  16. Signor, G., Matsumura, M., Schellman, J. A. & Matthews, B. W. in Current Research in Protein Chemistry (ed. Villafranca, J. J.) (Academic, in the press).

  17. Maniatis, T., Fritsch, E. F. & Sambrook, J. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory, New York, 1982).

    Google Scholar 

  18. Kunkel, T. A., Roberts, J. D. & Zakour, R. A. Meth. Enzym. 154, 367–382 (1987).

    Article  CAS  Google Scholar 

  19. Messing, J. Meth. Enzym. 101, 20–78 (1983).

    Article  CAS  Google Scholar 

  20. Sanger, F., Nickelsen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  ADS  CAS  Google Scholar 

  21. Zoller, M. J. & Smith, M. Meth. Enzym. 100, 468–500 (1983).

    Article  CAS  Google Scholar 

  22. Muchmore, D. C. McIntosh, L. P., Russell, C. B., Anderson, D. E. & Dahlquist, F. W. Meth. Enzym. 177, 44–73 (1989).

    Article  CAS  Google Scholar 

  23. Habeeb, A. F. S. A. Meth. Enzym. 25, 457–464 (1972).

    Article  CAS  Google Scholar 

  24. Tsugita, A., Inouye, M., Terzaghi, E. & Streisinger, G. J. biol. Chem. 243, 391–397 (1968).

    CAS  PubMed  Google Scholar 

  25. Matthews, B. W., Nicholson, H. & Becktel, W. J. Proc. natn. Acad. Sci. U.S.A. 84, 6663–6667 (1987).

    Article  ADS  CAS  Google Scholar 

  26. Elwell, M. & Schellman, J. biochem. biophys. Acta 386, 309–323 (1975).

    CAS  PubMed  Google Scholar 

  27. Hawkes, R., Grütter, M. G. & Schellman, J. J. molec. Biol. 175, 195–212 (1984).

    Article  CAS  Google Scholar 

  28. Becktel, W. J. & Baase, W. A. Biopolymers 26, 619–623 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsumura, M., Signor, G. & Matthews, B. Substantial increase of protein stability by multiple disulphide bonds. Nature 342, 291–293 (1989). https://doi.org/10.1038/342291a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/342291a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing