Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Membrane depolarization evokes neurotransmitter release in the absence of calcium entry

Abstract

THE discovery that Ca2+ is necessary for the release of neurotransmitter, the primary means by which nerve cells communicate, led to the calcium hypothesis of neutransmitter release1–4, in which release is initiated after an action potential only by an increase in intracellular Ca2+ concentration near the release sites and is terminated (1–2 ms) by the rapid removal of Ca2+. Since then, the calcium-voltage hypothesis has been proposed5,6, in which the depolarization of the presynaptic terminals has two functions. First, in common with the calcium hypothesis, the Ca2+ conductance is increased, thereby permitting Ca2+ entry. Second, a confor-mational change is induced in a membrane molecule that renders it sensitive to Ca2+, and then binding of Ca2+ to this active form triggers release of neurotransmitter. When the membrane is repolarized, the molecule is inactivated and release is terminated, regardless of the local Ca2+ concentration at that moment. This hypothesis, in contrast to the calcium hypothesis, accounts for the insensitivity of the time course of release to experimental manipulations of intracellular Ca2+ concentation7–11, Furthermore, it explains rapid termination of release after depolarization, even though Ca2+ concentration may still be high. Here we describe experiments that distinguish between these two hypotheses and find that our results support the calcium voltage hypothesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Katz, B. & Miledi, R. Proc. Roy. Soc. B161, 496–503 (1965).

    ADS  Google Scholar 

  2. Miledi, R. Proc. Roy. Soc. B183, 421–425 (1973).

    ADS  Google Scholar 

  3. Katz, B. & Miledi, R. Proc. Roy. Soc. B161, 483–495 (1965).

    ADS  Google Scholar 

  4. Smith, S. U. & Augustine, G. J. Trends Neurosci. 11, 458–464 (1988).

    Article  CAS  Google Scholar 

  5. Parnas, I., Parnas, H. & Dudel, J. Pflügers Arch. Eur. J. Physiol. 406, 131–137 (1986).

    Article  CAS  Google Scholar 

  6. Parnas, H., Parnas, I. & Segel, L. A. Int. Rev. Neurobiol. (in the press).

  7. Barrett, E. F. & Stevens, C. F. J. Physiol, Lond. 227, 691–708 (1972).

    Article  CAS  Google Scholar 

  8. Matzner, H., Parnas, H. & Parnas, I. J. Physiol, Lond. 398, 109–121 (1988).

    Article  CAS  Google Scholar 

  9. Parnas, H., Hovav, G. & Parnas, I. Biophys. J. 55, 859–874 (1989).

    Article  ADS  CAS  Google Scholar 

  10. Datyner, N. B. & Gage, P. W. J. Physiol, Lond. 303, 299–314 (1980).

    Article  CAS  Google Scholar 

  11. Andreu, R. & Barett, E. F. J. Physiol., Lond. 308, 79–97 (1980).

    Article  CAS  Google Scholar 

  12. Adams, S. R., Kao, J. P. Y., Grynkiewicz, G., Minta, A. & Tsien, R. Y. J. Am. chem. Soc. 110, 3212–3220 (1988).

    Article  CAS  Google Scholar 

  13. Zucker, R. S. & Haydon, P. G. Nature 335, 360–362 (1988).

    Article  ADS  CAS  Google Scholar 

  14. Parnas, H., Dudel, J. & Parnas, I. Pflügers Arch. Eur. J. Physiol. 496, 121–130 (1986).

    Article  Google Scholar 

  15. Wojtowicz, J. M. & Atwood, H. L. J. Neurobiol. 14, 385–390 (1983).

    Article  CAS  Google Scholar 

  16. Hatt, H., Franke, C. H. & Dudel, J. Pflügers Arch. Eur. J. Physiol. 411, 17–26 (1988).

    Article  CAS  Google Scholar 

  17. Zucker, R. S. & Lando, L. Science 231, 574–579 (1986).

    Article  ADS  CAS  Google Scholar 

  18. Adams, O. J., Takeda, K. & Umbach, J. A. J. Physiol., Lond. 369, 145–159 (1985).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hochner, B., Parnas, H. & Parnas, I. Membrane depolarization evokes neurotransmitter release in the absence of calcium entry. Nature 342, 433–435 (1989). https://doi.org/10.1038/342433a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/342433a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing