Abstract
PLASMA high density lipoproteins (HDL) are a negative risk factor for atherosclerosis. Increased HDL is sometimes clustered in families, but a genetic basis has never been clearly documented1. The plasma cholesteryl ester transfer protein (CETP) catalyses the transfer of cholesteryl ester from HDL to other lipoproteins and therefore might influence HDL levels2. Using monoclonal antibodies, we show that CETP is absent in two Japanese siblings who have markedly increased and enlarged HDL. Furthermore, they are homozygous for a point mutation in the 5′-splice donor site of intron 14 of the gene for CETP, a change that is incompatible with normal splicing of pre-messenger RNA3. The results indicate that the family has an inherited deficiency of CETP due to a gene splicing defect, and illustrate the key role that CETP has in human HDL metabolism.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Breslow, J. L. in Metabolic Basis of Inherited Disease 6th ed., 1251–1266 (McGraw-Hill, New York, 1989).
Tall, A. R. J. Lipid Res. 27, 361–367 (1986).
Padgett, R. A. Grabowski, P. J., Konarska, M. M., Seilea, S. & Sharp, P. A. A. Rev. Biochem. 55, 1119–1150 (1986).
Koizumi, J. et al. Atherosclerosis 58, 175–186 (1985).
Morton, R. E. & Zilversmit, D. B. J. biol. Chem. 256, 11992–11995 (1981).
Barter, P. J. & Jones, M. E. J. Lipid Res. 21, 238–249 (1980).
Hesler, C. B., Swenson, T. L. & Tall, A. R. J. biol. Chem. 262, 2275–2282 (1987).
Hesler, C. B. et al. J. biol. Chem. 263, 5020–5023 (1988).
Swenson, T. L. et al. J. biol. Chem. 264, 14318–14326 (1989).
Marcel, Y. L. et al. Arteriosclerosis 8, 593a (1988).
Drayna, D. et al. Nature 327, 632–634 (1987).
Saiki, R. et al. Science 239, 487–491 (1988).
Hattori, M. & Sakaki, Y. Analyt. Biochem. 152, 232–238 (1986).
Mount, S. M. Nucleic Acids Res. 10, 459–472 (1982).
Green, M. R. A. Rev. Genet. 20, 671–708 (1986).
Aebi, M., Hornig, H., Padgett, R. A., Reiser, J. & Weissman, C. Cell 47, 555–565 (1986).
Lamond, A. I., Konarksa, M. M., Grabowski, P. J. & Sharp, P. A. Proc. natn. Acad. Sci. U.S.A. 85, 411–415 (1988).
Treisman, R., Orkin, S. H. & Maniatis, T. Nature 302, 591–596 (1983).
Baird, M. et al. Proc. natn. Acad. Sci. U.S.A. 78, 4218–4221 (1981).
Wieringa, B., Meyer, F., Reiser, J. & Weissmann, C. Nature 301, 38–43 (1983).
Mitchell, P. J., Urlaub, G. & Chasin, L. Molec. Cell Biol. 6, 1926–1935 (1986).
Bird, A. P. Nucleic Acids Res. 8, 1499–1504 (1980).
Coulondre, C., Miller, J. H., Farabaugh, P. J. & Gilbert, W. Nature 274, 775–780 (1978).
Kunkel, L. M. et al. Proc. natn. Acad. Sci. U.S.A. 74, 1245–1249 (1977).
Higuchi, R., von Beroldingen, C. H., Sensabauth, G. H. & Erlich, H. A. Nature 332, 543–545 (1988).
Maxam, A. M. & Gilbert, W. Meth. Enzym. 65, 449–560 (1980).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Brown, M., Inazu, A., Hesler, C. et al. Molecular basis of lipid transfer protein deficiency in a family with increased high-density lipoproteins. Nature 342, 448–451 (1989). https://doi.org/10.1038/342448a0
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/342448a0
This article is cited by
-
Structure-based mechanism and inhibition of cholesteryl ester transfer protein
Current Atherosclerosis Reports (2023)
-
CETP Inhibitors: Should We Continue to Pursue This Pathway?
Current Atherosclerosis Reports (2022)
-
Human cholesteryl ester transport protein transgene promotes macrophage reverse cholesterol transport in C57BL/6 mice and phospholipid transfer protein gene knockout mice
Journal of Physiology and Biochemistry (2021)
-
Mendelian randomization reveals unexpected effects of CETP on the lipoprotein profile
European Journal of Human Genetics (2019)
-
HDL and atherosclerotic cardiovascular disease: genetic insights into complex biology
Nature Reviews Cardiology (2018)