Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Molecular basis of lipid transfer protein deficiency in a family with increased high-density lipoproteins

Abstract

PLASMA high density lipoproteins (HDL) are a negative risk factor for atherosclerosis. Increased HDL is sometimes clustered in families, but a genetic basis has never been clearly documented1. The plasma cholesteryl ester transfer protein (CETP) catalyses the transfer of cholesteryl ester from HDL to other lipoproteins and therefore might influence HDL levels2. Using monoclonal antibodies, we show that CETP is absent in two Japanese siblings who have markedly increased and enlarged HDL. Furthermore, they are homozygous for a point mutation in the 5′-splice donor site of intron 14 of the gene for CETP, a change that is incompatible with normal splicing of pre-messenger RNA3. The results indicate that the family has an inherited deficiency of CETP due to a gene splicing defect, and illustrate the key role that CETP has in human HDL metabolism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Breslow, J. L. in Metabolic Basis of Inherited Disease 6th ed., 1251–1266 (McGraw-Hill, New York, 1989).

    Google Scholar 

  2. Tall, A. R. J. Lipid Res. 27, 361–367 (1986).

    CAS  PubMed  Google Scholar 

  3. Padgett, R. A. Grabowski, P. J., Konarska, M. M., Seilea, S. & Sharp, P. A. A. Rev. Biochem. 55, 1119–1150 (1986).

    Article  CAS  Google Scholar 

  4. Koizumi, J. et al. Atherosclerosis 58, 175–186 (1985).

    Article  CAS  Google Scholar 

  5. Morton, R. E. & Zilversmit, D. B. J. biol. Chem. 256, 11992–11995 (1981).

    CAS  PubMed  Google Scholar 

  6. Barter, P. J. & Jones, M. E. J. Lipid Res. 21, 238–249 (1980).

    CAS  PubMed  Google Scholar 

  7. Hesler, C. B., Swenson, T. L. & Tall, A. R. J. biol. Chem. 262, 2275–2282 (1987).

    CAS  PubMed  Google Scholar 

  8. Hesler, C. B. et al. J. biol. Chem. 263, 5020–5023 (1988).

    CAS  PubMed  Google Scholar 

  9. Swenson, T. L. et al. J. biol. Chem. 264, 14318–14326 (1989).

    CAS  PubMed  Google Scholar 

  10. Marcel, Y. L. et al. Arteriosclerosis 8, 593a (1988).

    Article  Google Scholar 

  11. Drayna, D. et al. Nature 327, 632–634 (1987).

    Article  ADS  CAS  Google Scholar 

  12. Saiki, R. et al. Science 239, 487–491 (1988).

    Article  ADS  CAS  Google Scholar 

  13. Hattori, M. & Sakaki, Y. Analyt. Biochem. 152, 232–238 (1986).

    Article  CAS  Google Scholar 

  14. Mount, S. M. Nucleic Acids Res. 10, 459–472 (1982).

    Article  CAS  Google Scholar 

  15. Green, M. R. A. Rev. Genet. 20, 671–708 (1986).

    Article  CAS  Google Scholar 

  16. Aebi, M., Hornig, H., Padgett, R. A., Reiser, J. & Weissman, C. Cell 47, 555–565 (1986).

    Article  CAS  Google Scholar 

  17. Lamond, A. I., Konarksa, M. M., Grabowski, P. J. & Sharp, P. A. Proc. natn. Acad. Sci. U.S.A. 85, 411–415 (1988).

    Article  ADS  CAS  Google Scholar 

  18. Treisman, R., Orkin, S. H. & Maniatis, T. Nature 302, 591–596 (1983).

    Article  ADS  CAS  Google Scholar 

  19. Baird, M. et al. Proc. natn. Acad. Sci. U.S.A. 78, 4218–4221 (1981).

    Article  ADS  CAS  Google Scholar 

  20. Wieringa, B., Meyer, F., Reiser, J. & Weissmann, C. Nature 301, 38–43 (1983).

    Article  ADS  CAS  Google Scholar 

  21. Mitchell, P. J., Urlaub, G. & Chasin, L. Molec. Cell Biol. 6, 1926–1935 (1986).

    Article  CAS  Google Scholar 

  22. Bird, A. P. Nucleic Acids Res. 8, 1499–1504 (1980).

    Article  CAS  Google Scholar 

  23. Coulondre, C., Miller, J. H., Farabaugh, P. J. & Gilbert, W. Nature 274, 775–780 (1978).

    Article  ADS  CAS  Google Scholar 

  24. Kunkel, L. M. et al. Proc. natn. Acad. Sci. U.S.A. 74, 1245–1249 (1977).

    Article  ADS  CAS  Google Scholar 

  25. Higuchi, R., von Beroldingen, C. H., Sensabauth, G. H. & Erlich, H. A. Nature 332, 543–545 (1988).

    Article  ADS  CAS  Google Scholar 

  26. Maxam, A. M. & Gilbert, W. Meth. Enzym. 65, 449–560 (1980).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brown, M., Inazu, A., Hesler, C. et al. Molecular basis of lipid transfer protein deficiency in a family with increased high-density lipoproteins. Nature 342, 448–451 (1989). https://doi.org/10.1038/342448a0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/342448a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing