Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Calcium hotspots caused by L-channel clustering promote morphological changes in neuronal growth cones

Abstract

THE increase in intracellular Ca2+concentration ([Ca2+]i) that follows electrical activity in excitable cells influences various cellular functions. But the measured increase in average cytosolic [Ca2+]i(typically 10 nM per action potential1–3) is often less than the micromolar [Ca2+]i required to activate proteins controlling cell function4–5. We now report that clustering of L-type Ca2+ channels causes [Ca2+]i hotspots of average diameter 7 μm at the neuronal growth cone. At the hotspot, [Ca2+]i changes of the order of 1 μM were recorded during 1-s voltage-clamp depolarizations, whereas a single action potential raised [Ca2+]i by 89 nM. Depolarization will therefore activate enzymes with a micromolar requirement for Ca2+ at the hotspot. Local morphological changes near the site of the hotspot were induced by action potentials. We observed hotspots in all regions of the growth cone, usually at the base of processes extending from the growth-cone palm, but never in the neurite. The role of voltage-dependent Ca2+ influx in controlling nerve cell outgrowth has been a puzzle: although raised [Ca2+]i triggers outgrowth of the growth cone margin, neurite elongation requires low [Ca2+]i(refs 6–8). Our results resolve this paradox: electrical activity can selectively raise [Ca2+]i in the growth cone, leaving neurite [Ca2+]ilow. Gross [Ca2+]i gradients and localized hotspots have been previously reported in depolarized neurons3,9–12. Patch-clamp, toxin-binding and freeze-fracture studies have demonstrated that calcium channels are grouped in clusters13–17. However, this is the first report that calcium channel clusters can cause [Ca2+]i hotspots, and that channel clustering has a physiological role.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Smith, S. J., MacDermott, A. B. & Weight, F. F. Nature 304, 350–352 (1983).

    Article  ADS  CAS  Google Scholar 

  2. Neering, I. R. & McBurney, R. N. Nature 309, 158–160 (1984).

    Article  ADS  CAS  Google Scholar 

  3. Bolsover, S. R. & Spector, I. J. Neurosci. 6, 1934–1940 (1986).

    Article  CAS  Google Scholar 

  4. Baker, P. F. & Knight, D. E. Phil. Trans. Roy. Soc. B296, 83–103 (1981).

    Article  ADS  CAS  Google Scholar 

  5. Manalan, A. S. & Klee, C. B. Adv. Cyclic Nucleotide 18, 227–278 (1984).

    CAS  Google Scholar 

  6. Mattson, M. P. & Kater, S. B. J. Neurosci. 7, 4034–4043 (1987).

    Article  CAS  Google Scholar 

  7. Goldberg, D. J. J. Neurosci. 8, 2596–2605 (1988).

    Article  CAS  Google Scholar 

  8. Silver, R. A., Lamb, A. G. & Bolsover, S. R. J. Neurosci. 9, 4007–4020 (1989).

    Article  CAS  Google Scholar 

  9. Kater, S. B., Mattson, M. P., Cohan, C. & Connor, J. Trends Nueurosci. 11, 315–321 (1988).

    Article  CAS  Google Scholar 

  10. Smith, S. J. & Augustine, G. J. Trends Neurosci. 11, 458 (1988).

    Article  CAS  Google Scholar 

  11. Tank, D. W., Sugimori, M., Connor, J. A. & Llinas, R. R. Science 242, 773–777 (1988).

    Article  ADS  CAS  Google Scholar 

  12. Regehr, W. G., Connor, J. A. & Tank, D. W. Nature 341, 533–536 (1989).

    Article  ADS  CAS  Google Scholar 

  13. Lipscombe, D. et al. Proc. natn. Acad. Sci. U.S.A. 85, 2398–2402 (1988).

    Article  ADS  CAS  Google Scholar 

  14. Thompson, S. & Coombs, J. J. Neurosci. 8, 1929–1939 (1988).

    Article  CAS  Google Scholar 

  15. Fox, A. P., Nowycky, M. C. & Tsien, R. W. J. Physiol. 394, 173–200 (1987).

    Article  CAS  Google Scholar 

  16. Jones, O. T., Kunze, D. L. & Angelides, K. J. Science 244, 1189–1193 (1989).

    Article  ADS  CAS  Google Scholar 

  17. Pumplin, D. W., Reese, T. S. & Linas, R. Proc. natn. Acad. Sci. U.S.A. 78, 7210–7213 (1981).

    Article  ADS  CAS  Google Scholar 

  18. Bolsover, S. R. J. gen. Physiol. 88, 149–165 (1986).

    Article  CAS  Google Scholar 

  19. Narahashi, T., Tsunoo, A. & Yoshii, M. J. Physiol. 383, 231–249 (1987).

    Article  CAS  Google Scholar 

  20. Tsien, R. W., Lipscombe, D., Madison, D. V., Bley, K. R. & Fox, A. P. Trends Neurosci. 11, 431–438 (1988).

    Article  CAS  Google Scholar 

  21. Nowycky, M. C., Fox, A. P. & Tsien, R. W. Nature 316, 440–443 (1985).

    Article  ADS  CAS  Google Scholar 

  22. O'Sullivan, A. J., Cheek, T. R., Moreton, R. B., Berridge, M. J. & Burgoyne, R. D. EMBO J. 8, 401–411 (1989).

    Article  CAS  Google Scholar 

  23. Cooper, J. A. et al. J. Cell Biol. 104, 491–501 (1987).

    Article  CAS  Google Scholar 

  24. Purves, D., Lichtman, J. W. Principles of Neural Development (Sinauer, Sunderland, Massachusetts, 1985).

    Google Scholar 

  25. Gundersen, R. W. & Barrett, J. M. J. Cell Biol. 87, 546–554 (1980).

    Article  CAS  Google Scholar 

  26. Grynkiewicz, G., Poenie, M. & Tsien, R. Y. J. biol. Chem. 260, 3440–3540 (1975).

    Google Scholar 

  27. Lansman, J. B., Hess, P. & Tsien, R. W. J. gen. Physiol. 88, 321–347 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silver, R., Lamb, A. & Bolsover, S. Calcium hotspots caused by L-channel clustering promote morphological changes in neuronal growth cones. Nature 343, 751–754 (1990). https://doi.org/10.1038/343751a0

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/343751a0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing